Research Article
BibTex RIS Cite

On discrete orthogonal U-Bernoulli Korobov-type polynomials

Year 2024, Volume: 7 Issue: Special Issue: AT&A, 1 - 10, 16.12.2024
https://doi.org/10.33205/cma.1502670

Abstract

The primary objective of this paper is to introduce and examine the new class of discrete orthogonal polynomials called $U$-Bernoulli Korobov-type polynomials. Furthermore, we derive essential recurrence relations and explicit representations for this polynomial class. Most of the results are proven through the utilization of generating function methods. Lastly, we place particular emphasis on investigating the orthogonality relation associated with these polynomials.

References

  • F. Avram, M.S. Taqqu: Noncentral limit theorems and Appell polynomials, Ann. Probab., 15 (1987), 767–775.
  • J. Babini: Polinomios generalizados de Bernoulli y sus correlativos, Rev. Mat. Hisp.-Am., 10 (4) (1935), 23–25.
  • L. Carlitz: A note on Bernoulli and Euler polynomials of the second kind, Scr. Math., 25 (1961), 323–330.
  • L. Carlitz: Degenerate Stirling, Beroulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
  • C. V. L. Charlier: Über die darstellung willkurlicher funktionen, Arkiv för Matematik, Astronomi och Fysik., 25 (3) (1970), 1–11.
  • A.G. Asensi, E. Labarga, E. J.M. Ceniceros and J., Varona: Boole-Dunklpolynomialsandgeneralizations, Rev.RealAcad.Cienc.ExactasFis.Nat.Ser.A-Mat., 118 (2024), Article ID: 16.
  • I. Gavrea, M. Ivan: Approximation properties related to the Bell polynomials, Constr. Math. Anal., 4 (2) (2021), 253–259.
  • R.L. Graham, D.E. Knuth, O: Patashnik, Concrete Mathematics, A Foundation for Computer Science, 2nd ed., AddisonWesley, Reading, MA (1994).
  • C. Jordan: Sur les polynomes analogues aux polynomes de Bernoulli et sur des formules de sommation analogues à celle de MacLaurin-Euler, Acta Szeged, 4 (1929), 130–150.
  • V. Kostov: The disconnectedness of certain sets defined after uni-variate polynomials, Constr. Math. Anal., 5 (3) (2022), 119–133.
  • D.E. Knuth: Two notes on notation, Am. Math. Mon., 99 (1992), 403–422.
  • Korobov: Special polynomials and their applications diophantine approximations, Math. Notes, 2 ( 1996), 77–89.
  • J. Meixner: Orthogonale polynomsysteme mit einem besonderen Gestalt der erzeugenden funktion, J. London Math. Soc., 9 (1934), 6–13.
  • Y. Quintana, W. Ramírez and A. Urieles: Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14 (4) (2020), 583–596.
  • W. Ramírez, D. Bedoya, A. Urieles, C. Cesarano and M. Ortega: New U-Bernoulli, U-Euler and U-Genocchi Polynomials and Their Matrices, Carpathian Math. Publ., 15 (2) (2023), 449–467.
  • J. Rey Pastor: Polinomios correlativos de los de Bernoulli, Bol. Semin. Mat. Argent., 1 (3) (1929) 1–10.
  • S. Zagorodnyuk: On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle, Constr. Math. Anal., 3 (2) (2020), 75–84.
Year 2024, Volume: 7 Issue: Special Issue: AT&A, 1 - 10, 16.12.2024
https://doi.org/10.33205/cma.1502670

Abstract

References

  • F. Avram, M.S. Taqqu: Noncentral limit theorems and Appell polynomials, Ann. Probab., 15 (1987), 767–775.
  • J. Babini: Polinomios generalizados de Bernoulli y sus correlativos, Rev. Mat. Hisp.-Am., 10 (4) (1935), 23–25.
  • L. Carlitz: A note on Bernoulli and Euler polynomials of the second kind, Scr. Math., 25 (1961), 323–330.
  • L. Carlitz: Degenerate Stirling, Beroulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
  • C. V. L. Charlier: Über die darstellung willkurlicher funktionen, Arkiv för Matematik, Astronomi och Fysik., 25 (3) (1970), 1–11.
  • A.G. Asensi, E. Labarga, E. J.M. Ceniceros and J., Varona: Boole-Dunklpolynomialsandgeneralizations, Rev.RealAcad.Cienc.ExactasFis.Nat.Ser.A-Mat., 118 (2024), Article ID: 16.
  • I. Gavrea, M. Ivan: Approximation properties related to the Bell polynomials, Constr. Math. Anal., 4 (2) (2021), 253–259.
  • R.L. Graham, D.E. Knuth, O: Patashnik, Concrete Mathematics, A Foundation for Computer Science, 2nd ed., AddisonWesley, Reading, MA (1994).
  • C. Jordan: Sur les polynomes analogues aux polynomes de Bernoulli et sur des formules de sommation analogues à celle de MacLaurin-Euler, Acta Szeged, 4 (1929), 130–150.
  • V. Kostov: The disconnectedness of certain sets defined after uni-variate polynomials, Constr. Math. Anal., 5 (3) (2022), 119–133.
  • D.E. Knuth: Two notes on notation, Am. Math. Mon., 99 (1992), 403–422.
  • Korobov: Special polynomials and their applications diophantine approximations, Math. Notes, 2 ( 1996), 77–89.
  • J. Meixner: Orthogonale polynomsysteme mit einem besonderen Gestalt der erzeugenden funktion, J. London Math. Soc., 9 (1934), 6–13.
  • Y. Quintana, W. Ramírez and A. Urieles: Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci., 14 (4) (2020), 583–596.
  • W. Ramírez, D. Bedoya, A. Urieles, C. Cesarano and M. Ortega: New U-Bernoulli, U-Euler and U-Genocchi Polynomials and Their Matrices, Carpathian Math. Publ., 15 (2) (2023), 449–467.
  • J. Rey Pastor: Polinomios correlativos de los de Bernoulli, Bol. Semin. Mat. Argent., 1 (3) (1929) 1–10.
  • S. Zagorodnyuk: On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle, Constr. Math. Anal., 3 (2) (2020), 75–84.
There are 17 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Alejandro Urieles 0000-0002-7186-0898

William Ramirez 0000-0003-4675-0221

Clemente Cesarano 0000-0002-1694-7907

Early Pub Date December 16, 2024
Publication Date December 16, 2024
Submission Date June 19, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2024 Volume: 7 Issue: Special Issue: AT&A

Cite

APA Urieles, A., Ramirez, W., & Cesarano, C. (2024). On discrete orthogonal U-Bernoulli Korobov-type polynomials. Constructive Mathematical Analysis, 7(Special Issue: AT&A), 1-10. https://doi.org/10.33205/cma.1502670
AMA Urieles A, Ramirez W, Cesarano C. On discrete orthogonal U-Bernoulli Korobov-type polynomials. CMA. December 2024;7(Special Issue: AT&A):1-10. doi:10.33205/cma.1502670
Chicago Urieles, Alejandro, William Ramirez, and Clemente Cesarano. “On Discrete Orthogonal U-Bernoulli Korobov-Type Polynomials”. Constructive Mathematical Analysis 7, no. Special Issue: AT&A (December 2024): 1-10. https://doi.org/10.33205/cma.1502670.
EndNote Urieles A, Ramirez W, Cesarano C (December 1, 2024) On discrete orthogonal U-Bernoulli Korobov-type polynomials. Constructive Mathematical Analysis 7 Special Issue: AT&A 1–10.
IEEE A. Urieles, W. Ramirez, and C. Cesarano, “On discrete orthogonal U-Bernoulli Korobov-type polynomials”, CMA, vol. 7, no. Special Issue: AT&A, pp. 1–10, 2024, doi: 10.33205/cma.1502670.
ISNAD Urieles, Alejandro et al. “On Discrete Orthogonal U-Bernoulli Korobov-Type Polynomials”. Constructive Mathematical Analysis 7/Special Issue: AT&A (December 2024), 1-10. https://doi.org/10.33205/cma.1502670.
JAMA Urieles A, Ramirez W, Cesarano C. On discrete orthogonal U-Bernoulli Korobov-type polynomials. CMA. 2024;7:1–10.
MLA Urieles, Alejandro et al. “On Discrete Orthogonal U-Bernoulli Korobov-Type Polynomials”. Constructive Mathematical Analysis, vol. 7, no. Special Issue: AT&A, 2024, pp. 1-10, doi:10.33205/cma.1502670.
Vancouver Urieles A, Ramirez W, Cesarano C. On discrete orthogonal U-Bernoulli Korobov-type polynomials. CMA. 2024;7(Special Issue: AT&A):1-10.