Research Article
BibTex RIS Cite

General Hardy-type operators on local generalized Morrey spaces

Year 2025, Volume: 8 Issue: 1, 1 - 14
https://doi.org/10.33205/cma.1531860

Abstract

This paper extends the mapping properties of the general Hardy-type operators to local Morrey spaces built on ball quasi-Banach function spaces. As applications of the main result, we establish the two weight norm inequalities of the Hardy operators to the local Morrey spaces, the mapping properties of the Riemann-Liouville integrals on local Morrey spaces built on rearrangement-invariant quasi-Banach function spaces, the Hardy inequalities on the local Morrey spaces with variable exponents.

References

  • K. Andersen, H. Heinig: Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal., 14 (1983), 834–844.
  • K. Andersen, E. Sawyer: Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc., 308 (1988), 547–558.
  • C. Bennett, R. Sharpley: Interpolations of Operators, Academic Press, Florida (1988).
  • S. Bloom, R. Kerman: Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc., 113 (1991), 135–141.
  • V. I. Burenkov, H. V. Guliyev: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Stud. Math., 163 (2004), 157–176.
  • V. I. Burenkov, H. V. Guliyev and V. S. Guliyev: Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces, J. Comp. Appl. Math., 208 (2007), 280–301.
  • V. I. Burenkov, V. S. Guliyev, T. V. Tararykova and A. Serbetci: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in Local Morrey-type spaces, Dokl. Akad. Nauk, 422 (2008), 11–14.
  • V. Burenkov, A. Gogatishvili, V. S. Guliyev and R. Mustafayev: Boundedness of the fractional maximal operator in local Morrey-type spaces, Compl. Variabl. Ellipt. Equat., 55 (2010), 739–758.
  • V. Burenkov, E. Nursultanov: Description of interpolation spaces for local Morrey-type spaces, Proc. Steklov Inst. Math., 269 (2010), 46–56.
  • D. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces, Birkhäuser, Basel (2013).
  • D. Cruz-Uribe, E. Dalmasso, F. J. Martín-Reyes and P. Salvador: The Calderón operator and the Stieltjes transform on variable Lebesgue spaces with weights, Collect. Math., 71 (2020), 443–469.
  • L. Diening, S. Samko: Hardy inequalities in variable exponent Lebesgue spaces, Frac. Calc. Appl. Anal., 10 (2007), 1–18.
  • A. Gogatishvili, R. Mustafayev: Dual spaces of local Morrey-type spaces, Czech. Math. J., 61 (2011) 609–622.
  • V. Guliyev, A. Ismayilova, A. Kucukaslan and A. ¸Serbetçi: Generalized fractional integral operators on generalized local generalized Morrey spaces, Journal of Function Spaces, 2015 (2015), Article ID: 594323.
  • G. Hardy, J. Littlewood and G. Pólya: Inequalities, Cambridge Univ. Press, Cambridge (1952).
  • H. Heinig: Weighted norm inequalities for certain integral operators II, Proc. Amer. Math. Soc., 95 (1985), 387–395.
  • K.-P. Ho: Fourier integrals and Sobolev embedding on rearrangement-invariant quasi-Banach function spaces, Ann. Acad. Sci. Fenn. Math., 41 (2016), 897–922.
  • K.-P. Ho: Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces, Positivity, 25 (2021), 73–96.
  • K.-P. Ho: Singular integral operators and sublinear operators on Hardy local generalized Morrey spaces with variable exponents, Bull. Sci. Math., 171 (2021), Article ID: 103033.
  • K.-P. Ho: Calderón operator on local generalized Morrey spaces with variable exponents, Mathematics, 9 (2021), Article ID: 2977.
  • K.-P. Ho: Fractional integral operators on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces, Positivity, 27 (2023), Article ID: 26.
  • K.-P. Ho: Fractional integral operators on Hardy local generalized Morrey spaces with variable exponents, Carpathian Math. Publ., 16 (2024), 190–202.
  • K.-P. Ho: Stein-Weiss inequalities on local generalized Morrey spaces with variable exponents, Illinois J. Math., 68 (2024), 399–413.
  • K.-P. Ho: Localized operators on weighted Herz spaces, Math. Nachr., 297 (2024), 4067–4080.
  • A. Kufner, L.-E. Persson: Weighted inequalities of Hardy type, World Scientific, Singapore (2003).
  • P. Martín-Reyes, E. Sawyer: Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc., 106 (1989), 727–733.
  • S. Montgomery-Smith: The Hardy Operator and Boyd Indices, Interaction between Functional analysis, Harmonic analysis, and Probability, Marcel Dekker, Newyork (1996).
  • C. Morrey: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.
  • B. Muckenhoupt: Hardy’s inequality with weights, Studia Math., 44 (1972), 31–38.
  • R. Mustafayev, A. Kucukaslan: An extension of the Muckenhoupt–Wheeden theorem to generalized weighted Morrey spaces, Georgian Math. J., 28 (2021), 595–610.
  • B. Opic, A. Kufner: Hardy-type inequalities, Longman Scientific & Technical, Harlow (1990).
  • Y. Sawano, K.-P. Ho, D. Yang and S. Yang: Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math., 525 (2017), 1–102.
  • Y. Sawano, G. Di Fazio and D. Hakim: Morrey Spaces Introduction and Applications to Integral Operators and PDE’s, Volumes I and II, Chapman and Hall/CRC (2020).
  • E. Sawyer: Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc., 281 (1984), 329–337.
  • G. Sinnamon: Weighted Hardy and Opial type inequalities, J. Math. Anal. Appl., 160 (1991), 434–445.
  • V. Stepanov: Weighted inequalities for a class of Volterra convolution operators, J. London Math. Soc., 45 (1992), 232–242.
  • V. Stepanov: Weighted norm inequalities of Hardy type for a class of integral operators, J. London Math. Soc., 50 (1994), 105–120.
  • T.-L. Yee, K. L. Cheung, K.-P. Ho and C. K. Suen: Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local generalized Morrey spaces with variable exponents, Math. Inequal. Appl., 23 (2020), 1509–1528.
  • T.-L. Yee, K. L. Cheung and K.-P. Ho: Operators on local Orlicz-Morrey spaces, Filomat, 36 (2022), 1231–1243.
  • T.-L. Yee, K. L. Cheung, K.-P. Ho and C. K. Suen: Spherical Maximal Function on local generalized Morrey spaces with Variable Exponents. Vietnam J. Math., 52 (2024), 107–115.

Yerel genelleştirilmiş Morrey uzaylarında Genel Hardy tipi operatörler

Year 2025, Volume: 8 Issue: 1, 1 - 14
https://doi.org/10.33205/cma.1531860

Abstract

References

  • K. Andersen, H. Heinig: Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal., 14 (1983), 834–844.
  • K. Andersen, E. Sawyer: Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc., 308 (1988), 547–558.
  • C. Bennett, R. Sharpley: Interpolations of Operators, Academic Press, Florida (1988).
  • S. Bloom, R. Kerman: Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc., 113 (1991), 135–141.
  • V. I. Burenkov, H. V. Guliyev: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Stud. Math., 163 (2004), 157–176.
  • V. I. Burenkov, H. V. Guliyev and V. S. Guliyev: Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces, J. Comp. Appl. Math., 208 (2007), 280–301.
  • V. I. Burenkov, V. S. Guliyev, T. V. Tararykova and A. Serbetci: Necessary and sufficient conditions for the boundedness of genuine singular integral operators in Local Morrey-type spaces, Dokl. Akad. Nauk, 422 (2008), 11–14.
  • V. Burenkov, A. Gogatishvili, V. S. Guliyev and R. Mustafayev: Boundedness of the fractional maximal operator in local Morrey-type spaces, Compl. Variabl. Ellipt. Equat., 55 (2010), 739–758.
  • V. Burenkov, E. Nursultanov: Description of interpolation spaces for local Morrey-type spaces, Proc. Steklov Inst. Math., 269 (2010), 46–56.
  • D. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces, Birkhäuser, Basel (2013).
  • D. Cruz-Uribe, E. Dalmasso, F. J. Martín-Reyes and P. Salvador: The Calderón operator and the Stieltjes transform on variable Lebesgue spaces with weights, Collect. Math., 71 (2020), 443–469.
  • L. Diening, S. Samko: Hardy inequalities in variable exponent Lebesgue spaces, Frac. Calc. Appl. Anal., 10 (2007), 1–18.
  • A. Gogatishvili, R. Mustafayev: Dual spaces of local Morrey-type spaces, Czech. Math. J., 61 (2011) 609–622.
  • V. Guliyev, A. Ismayilova, A. Kucukaslan and A. ¸Serbetçi: Generalized fractional integral operators on generalized local generalized Morrey spaces, Journal of Function Spaces, 2015 (2015), Article ID: 594323.
  • G. Hardy, J. Littlewood and G. Pólya: Inequalities, Cambridge Univ. Press, Cambridge (1952).
  • H. Heinig: Weighted norm inequalities for certain integral operators II, Proc. Amer. Math. Soc., 95 (1985), 387–395.
  • K.-P. Ho: Fourier integrals and Sobolev embedding on rearrangement-invariant quasi-Banach function spaces, Ann. Acad. Sci. Fenn. Math., 41 (2016), 897–922.
  • K.-P. Ho: Linear operators, Fourier integral operators and k-plane transforms on rearrangement-invariant quasi-Banach function spaces, Positivity, 25 (2021), 73–96.
  • K.-P. Ho: Singular integral operators and sublinear operators on Hardy local generalized Morrey spaces with variable exponents, Bull. Sci. Math., 171 (2021), Article ID: 103033.
  • K.-P. Ho: Calderón operator on local generalized Morrey spaces with variable exponents, Mathematics, 9 (2021), Article ID: 2977.
  • K.-P. Ho: Fractional integral operators on Morrey spaces built on rearrangement-invariant quasi-Banach function spaces, Positivity, 27 (2023), Article ID: 26.
  • K.-P. Ho: Fractional integral operators on Hardy local generalized Morrey spaces with variable exponents, Carpathian Math. Publ., 16 (2024), 190–202.
  • K.-P. Ho: Stein-Weiss inequalities on local generalized Morrey spaces with variable exponents, Illinois J. Math., 68 (2024), 399–413.
  • K.-P. Ho: Localized operators on weighted Herz spaces, Math. Nachr., 297 (2024), 4067–4080.
  • A. Kufner, L.-E. Persson: Weighted inequalities of Hardy type, World Scientific, Singapore (2003).
  • P. Martín-Reyes, E. Sawyer: Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc., 106 (1989), 727–733.
  • S. Montgomery-Smith: The Hardy Operator and Boyd Indices, Interaction between Functional analysis, Harmonic analysis, and Probability, Marcel Dekker, Newyork (1996).
  • C. Morrey: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.
  • B. Muckenhoupt: Hardy’s inequality with weights, Studia Math., 44 (1972), 31–38.
  • R. Mustafayev, A. Kucukaslan: An extension of the Muckenhoupt–Wheeden theorem to generalized weighted Morrey spaces, Georgian Math. J., 28 (2021), 595–610.
  • B. Opic, A. Kufner: Hardy-type inequalities, Longman Scientific & Technical, Harlow (1990).
  • Y. Sawano, K.-P. Ho, D. Yang and S. Yang: Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math., 525 (2017), 1–102.
  • Y. Sawano, G. Di Fazio and D. Hakim: Morrey Spaces Introduction and Applications to Integral Operators and PDE’s, Volumes I and II, Chapman and Hall/CRC (2020).
  • E. Sawyer: Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc., 281 (1984), 329–337.
  • G. Sinnamon: Weighted Hardy and Opial type inequalities, J. Math. Anal. Appl., 160 (1991), 434–445.
  • V. Stepanov: Weighted inequalities for a class of Volterra convolution operators, J. London Math. Soc., 45 (1992), 232–242.
  • V. Stepanov: Weighted norm inequalities of Hardy type for a class of integral operators, J. London Math. Soc., 50 (1994), 105–120.
  • T.-L. Yee, K. L. Cheung, K.-P. Ho and C. K. Suen: Local sharp maximal functions, geometrical maximal functions and rough maximal functions on local generalized Morrey spaces with variable exponents, Math. Inequal. Appl., 23 (2020), 1509–1528.
  • T.-L. Yee, K. L. Cheung and K.-P. Ho: Operators on local Orlicz-Morrey spaces, Filomat, 36 (2022), 1231–1243.
  • T.-L. Yee, K. L. Cheung, K.-P. Ho and C. K. Suen: Spherical Maximal Function on local generalized Morrey spaces with Variable Exponents. Vietnam J. Math., 52 (2024), 107–115.
There are 40 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis
Journal Section Articles
Authors

Kwok-pun Ho 0000-0003-0966-5984

Tat-leung Yee 0000-0002-3970-1918

Early Pub Date January 20, 2025
Publication Date
Submission Date August 12, 2024
Acceptance Date January 12, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Ho, K.-p., & Yee, T.-l. (2025). General Hardy-type operators on local generalized Morrey spaces. Constructive Mathematical Analysis, 8(1), 1-14. https://doi.org/10.33205/cma.1531860
AMA Ho Kp, Yee Tl. General Hardy-type operators on local generalized Morrey spaces. CMA. January 2025;8(1):1-14. doi:10.33205/cma.1531860
Chicago Ho, Kwok-pun, and Tat-leung Yee. “General Hardy-Type Operators on Local Generalized Morrey Spaces”. Constructive Mathematical Analysis 8, no. 1 (January 2025): 1-14. https://doi.org/10.33205/cma.1531860.
EndNote Ho K-p, Yee T-l (January 1, 2025) General Hardy-type operators on local generalized Morrey spaces. Constructive Mathematical Analysis 8 1 1–14.
IEEE K.-p. Ho and T.-l. Yee, “General Hardy-type operators on local generalized Morrey spaces”, CMA, vol. 8, no. 1, pp. 1–14, 2025, doi: 10.33205/cma.1531860.
ISNAD Ho, Kwok-pun - Yee, Tat-leung. “General Hardy-Type Operators on Local Generalized Morrey Spaces”. Constructive Mathematical Analysis 8/1 (January 2025), 1-14. https://doi.org/10.33205/cma.1531860.
JAMA Ho K-p, Yee T-l. General Hardy-type operators on local generalized Morrey spaces. CMA. 2025;8:1–14.
MLA Ho, Kwok-pun and Tat-leung Yee. “General Hardy-Type Operators on Local Generalized Morrey Spaces”. Constructive Mathematical Analysis, vol. 8, no. 1, 2025, pp. 1-14, doi:10.33205/cma.1531860.
Vancouver Ho K-p, Yee T-l. General Hardy-type operators on local generalized Morrey spaces. CMA. 2025;8(1):1-14.