Research Article
BibTex RIS Cite

Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results

Year 2025, Volume: 8 Issue: 2, 117 - 134, 15.06.2025
https://doi.org/10.33205/cma.1597851

Abstract

We apply suitable maximum principles to obtain nonexistence and rigidity results for complete mean curvature flow solitons in certain warped product spaces. We also provide applications to self-shrinkers in Euclidean space, as well as to mean curvature flow solitons in real projective, pseudo-hyperbolic, Schwarzschild, and Reissner-Nordstr\"{o}m spaces. Furthermore, we establish new Moser-Bernstein type results for entire graphs constructed over the fiber of the ambient space that are mean curvature flow solitons.

References

  • L. J. Alías, A. G. Colares and H. F. de Lima: Uniqueness of entire graphs in warped products, J. Math. Anal. Appl., 430 (2015), 60–75.
  • L. J. Alías, M. Dajczer: Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv., 81 (2006), 653–663.
  • L. J. Alías, M. Dajczer: Constant mean curvature hypersurfaces in warped product spaces, Proc. Edinburg Math. Soc., 50 (2007), 511–526.
  • L. J. Alías, J. H. de Lira and M. Rigoli: Mean curvature flow solitons in the presence of conformal vector fields, J. Geom. Anal., 30 (2020), 1466–1529.
  • L. J. Alías, D. Impera and M. Rigoli: Hypersurfaces of constant higher order mean curvature in warped products, Trans. American Math. Soc., 365, (2013): 591–621.
  • A. L. Besse: Einstein manifolds, Ergebnisse Math. Grenzgeb., 3. Folge, Band 10, Springer, Berlin, Heidelberg, and New York (1987).
  • H. D. Cao, H. Li: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. PDE, 46 (2013), 879–889.
  • M. P. Cavalcante, J. M. Espinar: Halfspace type theorems for self-shrinkers, Bull. London Math. Soc., 48 (2016), 242–250.
  • B. Y. Chen: Differential Geometry of Warped Product Manifolds and Submanifolds,World Scientific, New Jersey (2017).
  • Q. M. Cheng, S. Ogata: 2-Dimensional complete self-shrinkers in R3, Math. Z., 284 (2016), 537–542.
  • Q. M. Cheng, Y. Peng: Complete self-shrinkers of the mean curvature flow, Calc. Var. PDE, 52 (2015), 497–506.
  • T. Colding, T. Ilmanen andW. P. Minicozzi II: Rigidity of generic singularities of mean curvature flow, Publ. Math. Inst. Hautes Études Sci., 121 (2015), 363–382.
  • T. Colding, T. Ilmanen, W. P. Minicozzi II, and B. White: The round sphere minimizes entropy among closed selfshrinkers, J. Differ. Geom., 95 (2013), 53–69.
  • T. Colding, W. P. Minicozzi II: Generic mean curvature flow I: Generic singularities, Ann. Math., 175 (2012), 755–833.
  • T. Colding, W. P. Minicozzi II and E. K. Pedersen: Mean curvature flow, Bull. American Math. Soc., 52 (2015), 297–333.
  • G. Colombo, L. Mari and M. Rigoli: Remarks on mean curvature flow solitons in warped products, Discrete Contin. Dyn. Syst., 13 (7) (2020), 1957–1991.
  • E. L. de Lima, H. F. de Lima: Height estimates and topology at infinity of hypersurfaces immersed in a certain class of warped products, Aequat. Math., 92 (2018), 737–761.
  • Q. Ding, Y. L. Xin: The rigidity theorems of self-shrinkers, Trans. American Math. Soc., 366 (2014), 5067–5085.
  • Q. Ding, Y. L. Xin and L. Yang: The rigidity theorems of self shrinkers via Gauss maps, Adv. Math., 303 (2016), 151–174.
  • K. Ecker, G. Huisken: Mean curvature evolution of entire graphs, Ann. of Math., 130 (1989), 453–471.
  • S. C. García-Martínez, D. Impera and M. Rigoli: A sharp height estimate for compact hypersurfaces with constant k-mean curvature in warped product spaces, Proc. Edinburg Math. Soc., 58 (2015), 403–419.
  • A. Grigor’yan: Analytic and geomtric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. American Math. Soc., 36 (1999), 135–249.
  • Q. Guang, J. J. Zhu: On the rigidity of mean convex self-shrinkers, Int. Math. Res. Not., 20 (2018), 6406–6425.
  • G. Huisken: Flow by mean curvature convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237–266.
  • M. Kanai: Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan, 38 (1986), 227–238.
  • N. Q. Le, N. Sesum: Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for selfshrinkers, Commun. Anal. Geom., 19 (2011), 1–27.
  • H. Li, Y. Wei: Classification and rigidity of self-shrinkers in the mean curvature flow, J. Math. Soc. Japan, 66 (2014), 709–734.
  • S. Montiel: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J., 48 (1999), 711–748.
  • H. Omori: Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205–214.
  • B. O’Neill: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London (1983).
  • S. Pigola, M. Rimoldi: Complete self-shrinkers confined into some regions of the space, Ann. Glob. Anal. Geom., 45 (2014), 47–65.
  • Y. Tashiro: Complete Riemannian manifolds and some vector fields, Trans. American Math. Soc., 117 (1965), 251–275.
  • L. Wang: A Benstein type theorem for self-similar shrinkers, Geom. Dedicata, 15 (2011), 297–303.
  • S. T. Yau: Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201–228.
  • S. T. Yau: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670.

Belirli Çarpık Ürünlerde Ortalama Eğrilik Akışının Solitonları: Yokluk, Sertlik ve Moser-Bernstein Tipi Sonuçlar

Year 2025, Volume: 8 Issue: 2, 117 - 134, 15.06.2025
https://doi.org/10.33205/cma.1597851

Abstract

Uygun maksimum ilkeleri uygulayarak, belirli çarpık ürün uzaylarında tam ortalama eğrilik akışı solitonları için yokluk ve sertlik sonuçları elde ediyoruz. Ayrıca, Öklid uzayındaki kendi kendine küçülen yüzeylere ve gerçek projektif, pseudo-hiperbolik, Schwarzschild ve Reissner-Nordström uzaylarındaki ortalama eğrilik akışı solitonlarına uygulamalar sağlıyoruz. Bunun yanı sıra, ortam uzayının lifleri üzerinde inşa edilen ve ortalama eğrilik akışı solitonları olan tüm grafikler için yeni Moser-Bernstein tipi sonuçlar ortaya koyuyoruz.

References

  • L. J. Alías, A. G. Colares and H. F. de Lima: Uniqueness of entire graphs in warped products, J. Math. Anal. Appl., 430 (2015), 60–75.
  • L. J. Alías, M. Dajczer: Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv., 81 (2006), 653–663.
  • L. J. Alías, M. Dajczer: Constant mean curvature hypersurfaces in warped product spaces, Proc. Edinburg Math. Soc., 50 (2007), 511–526.
  • L. J. Alías, J. H. de Lira and M. Rigoli: Mean curvature flow solitons in the presence of conformal vector fields, J. Geom. Anal., 30 (2020), 1466–1529.
  • L. J. Alías, D. Impera and M. Rigoli: Hypersurfaces of constant higher order mean curvature in warped products, Trans. American Math. Soc., 365, (2013): 591–621.
  • A. L. Besse: Einstein manifolds, Ergebnisse Math. Grenzgeb., 3. Folge, Band 10, Springer, Berlin, Heidelberg, and New York (1987).
  • H. D. Cao, H. Li: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. PDE, 46 (2013), 879–889.
  • M. P. Cavalcante, J. M. Espinar: Halfspace type theorems for self-shrinkers, Bull. London Math. Soc., 48 (2016), 242–250.
  • B. Y. Chen: Differential Geometry of Warped Product Manifolds and Submanifolds,World Scientific, New Jersey (2017).
  • Q. M. Cheng, S. Ogata: 2-Dimensional complete self-shrinkers in R3, Math. Z., 284 (2016), 537–542.
  • Q. M. Cheng, Y. Peng: Complete self-shrinkers of the mean curvature flow, Calc. Var. PDE, 52 (2015), 497–506.
  • T. Colding, T. Ilmanen andW. P. Minicozzi II: Rigidity of generic singularities of mean curvature flow, Publ. Math. Inst. Hautes Études Sci., 121 (2015), 363–382.
  • T. Colding, T. Ilmanen, W. P. Minicozzi II, and B. White: The round sphere minimizes entropy among closed selfshrinkers, J. Differ. Geom., 95 (2013), 53–69.
  • T. Colding, W. P. Minicozzi II: Generic mean curvature flow I: Generic singularities, Ann. Math., 175 (2012), 755–833.
  • T. Colding, W. P. Minicozzi II and E. K. Pedersen: Mean curvature flow, Bull. American Math. Soc., 52 (2015), 297–333.
  • G. Colombo, L. Mari and M. Rigoli: Remarks on mean curvature flow solitons in warped products, Discrete Contin. Dyn. Syst., 13 (7) (2020), 1957–1991.
  • E. L. de Lima, H. F. de Lima: Height estimates and topology at infinity of hypersurfaces immersed in a certain class of warped products, Aequat. Math., 92 (2018), 737–761.
  • Q. Ding, Y. L. Xin: The rigidity theorems of self-shrinkers, Trans. American Math. Soc., 366 (2014), 5067–5085.
  • Q. Ding, Y. L. Xin and L. Yang: The rigidity theorems of self shrinkers via Gauss maps, Adv. Math., 303 (2016), 151–174.
  • K. Ecker, G. Huisken: Mean curvature evolution of entire graphs, Ann. of Math., 130 (1989), 453–471.
  • S. C. García-Martínez, D. Impera and M. Rigoli: A sharp height estimate for compact hypersurfaces with constant k-mean curvature in warped product spaces, Proc. Edinburg Math. Soc., 58 (2015), 403–419.
  • A. Grigor’yan: Analytic and geomtric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. American Math. Soc., 36 (1999), 135–249.
  • Q. Guang, J. J. Zhu: On the rigidity of mean convex self-shrinkers, Int. Math. Res. Not., 20 (2018), 6406–6425.
  • G. Huisken: Flow by mean curvature convex surfaces into spheres, J. Differ. Geom., 20 (1984), 237–266.
  • M. Kanai: Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan, 38 (1986), 227–238.
  • N. Q. Le, N. Sesum: Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for selfshrinkers, Commun. Anal. Geom., 19 (2011), 1–27.
  • H. Li, Y. Wei: Classification and rigidity of self-shrinkers in the mean curvature flow, J. Math. Soc. Japan, 66 (2014), 709–734.
  • S. Montiel: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J., 48 (1999), 711–748.
  • H. Omori: Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205–214.
  • B. O’Neill: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London (1983).
  • S. Pigola, M. Rimoldi: Complete self-shrinkers confined into some regions of the space, Ann. Glob. Anal. Geom., 45 (2014), 47–65.
  • Y. Tashiro: Complete Riemannian manifolds and some vector fields, Trans. American Math. Soc., 117 (1965), 251–275.
  • L. Wang: A Benstein type theorem for self-similar shrinkers, Geom. Dedicata, 15 (2011), 297–303.
  • S. T. Yau: Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201–228.
  • S. T. Yau: Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670.
There are 35 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Márcio Batista 0000-0002-6495-3842

Henrique De Lima This is me 0000-0002-2798-7082

Wallace Gomes 0000-0002-5150-3578

Early Pub Date June 11, 2025
Publication Date June 15, 2025
Submission Date December 8, 2024
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Batista, M., De Lima, H., & Gomes, W. (2025). Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results. Constructive Mathematical Analysis, 8(2), 117-134. https://doi.org/10.33205/cma.1597851
AMA Batista M, De Lima H, Gomes W. Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results. CMA. June 2025;8(2):117-134. doi:10.33205/cma.1597851
Chicago Batista, Márcio, Henrique De Lima, and Wallace Gomes. “Solitons of Mean Curvature Flow in Certain Warped Products: Nonexistence, Rigidity, and Moser-Bernstein Type Results”. Constructive Mathematical Analysis 8, no. 2 (June 2025): 117-34. https://doi.org/10.33205/cma.1597851.
EndNote Batista M, De Lima H, Gomes W (June 1, 2025) Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results. Constructive Mathematical Analysis 8 2 117–134.
IEEE M. Batista, H. De Lima, and W. Gomes, “Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results”, CMA, vol. 8, no. 2, pp. 117–134, 2025, doi: 10.33205/cma.1597851.
ISNAD Batista, Márcio et al. “Solitons of Mean Curvature Flow in Certain Warped Products: Nonexistence, Rigidity, and Moser-Bernstein Type Results”. Constructive Mathematical Analysis 8/2 (June 2025), 117-134. https://doi.org/10.33205/cma.1597851.
JAMA Batista M, De Lima H, Gomes W. Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results. CMA. 2025;8:117–134.
MLA Batista, Márcio et al. “Solitons of Mean Curvature Flow in Certain Warped Products: Nonexistence, Rigidity, and Moser-Bernstein Type Results”. Constructive Mathematical Analysis, vol. 8, no. 2, 2025, pp. 117-34, doi:10.33205/cma.1597851.
Vancouver Batista M, De Lima H, Gomes W. Solitons of mean curvature flow in certain warped products: nonexistence, rigidity, and Moser-Bernstein type results. CMA. 2025;8(2):117-34.