On the boundedness of Riesz potential operators: insights from net spaces
Year 2025,
Volume: 8 Issue: 3, 165 - 175, 15.09.2025
Erlan Nursultanov
Durvudkhan Suragan
Muhammad Asad Zaighum
Abstract
This paper investigates the boundedness of Riesz potential operators on net spaces that are structured around special nets. We use the construction of net spaces and their intrinsic properties to establish conditions under which the considered operators are bounded. The methodology developed here provides a framework for establishing Hardy–Littlewood–Sobolev inequalities on net spaces, aiming at a deeper understanding of potential theory in non-standard settings.
References
-
D. R. Adams: A note on Riesz potentials, Duke Math. J., 42 (4) (1975), 765–778.
-
S. V. Astashkin, L. Maligranda: Structure of Cesàro function spaces: a survey, in Function spaces X, 13–40, Banach Center Publ., 102, Polish Acad. Sci. Inst. Math., Warsaw (2014).
-
A. N. Bashirova, A. H. Kalidolday and E. D. Nursultanov: Interpolation methods for anisotropic net spaces, Eurasian Math. J., 15 (2) (2024), 33–41.
-
A. N. Bashirova, E. D. Nursultanov: The Hardy-Littlewood theorem for double Fourier-Haar series from mixed metric Lebesgue Lp[0, 1]2 and net Np,q(M) spaces, Anal. Math., 48(1) (2022), 5–17.
-
C. Bennett, R. C. Sharpley: Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press, Boston, MA (1988).
-
R. E. Castillo, H. Rafeiro: An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de
Mathématiques de la SMC, Springer, Cham (2016).
-
L. Diening: Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl., 7 (2) (2004), 245–253.
-
L. Diening: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) andWk,p(·), Math. Nachr., 268 (2004), 31–43.
-
G. H. Hardy, J. E. Littlewood: Some properties of fractional integrals. I, Math. Z., 27 (1928), 565–606.
-
A. H. Kalidolday, E. D. Nursultanov: Interpolation properties of certain classes of net spaces, Lobachevskii J. Math., 44 (5) (2023), 1870–1878.
-
A. H. Kalidolday, E. D. Nursultanov: Marcinkiewicz’s interpolation theorem for linear operators on net spaces, Eurasian Math. J., 13 (4) (2022), 61–69.
-
V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 1, Operator Theory: Advances and Applications, 248, Birkhäuser/Springer, Cham (2016).
-
V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 2, Operator Theory: Advances and Applications, 249, Birkhäuser/Springer, Cham (2016).
-
V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko: Integral operators in non-standard function spaces. Vol. 3. Advances in grand function spaces, Operator Theory: Advances and Applications, 298, Birkhäuser/Springer, Cham (2024).
-
P. I. Lizorkin: Operators connected with fractional differentiation, and classes of differentiable functions, Trudy Mat. Inst. Steklov., 117 (1972), 212–243.
-
A. B. Mukanov: On the general net spaces, Journal of Mathematics, Mechanics and Computer Science, 87 (4) (2015), 27–34.
-
R. O’ Neil: Convolution operators and L(p,q) spaces, Duke Math. J., 30 (1) (1963), 129–142.
-
E. D. Nursultanov: Net spaces and inequalities of Hardy-Littlewood type, Sb. Math., 189 (3–4) (1998), 399–419.
-
E. D. Nursultanov and S. Y. Tikhonov: Net spaces and boundedness of integral operators, J. Geom. Anal., 21 (4) (2011), 950–981.
-
J. Peetre: On the theory of Lp,λ spaces, J. Functional Analysis, 4 (1969), 71–87.
-
S. G. Samko: Convolution and potential type operators in Lp(x)(Rn), Integral Transform. Spec. Funct., 7 (3–4) (1998), 261–284.
-
S. L. Sobolev: On a theorem of functional analysis, Sb. Math., 46 (4) (1938), 471–497.
-
E. M. Stein: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, NJ (1970).
-
A. Torchinsky: Real-variable methods in harmonic analysis, Pure and Applied Mathematics, 123, Academic Press, Orlando, FL (1986).