Research Article
BibTex RIS Cite

A combinatorial formula for recursive operator sequences and applications

Year 2025, Volume: 8 Issue: 4, 200 - 216, 15.12.2025
https://doi.org/10.33205/cma.1809730

Abstract

We study sequences of bounded operators \((T_n)_{n \ge 0}\) on a complex separable Hilbert space \(\mathcal{H}\) that satisfy a linear recurrence relation of the form
$$
T_{n+r} = A_0 T_n + A_1 T_{n+1} + \cdots + A_{r-1} T_{n+r-1} \quad(\textrm{for all } n\ge 0),
$$
where the coefficients \(A_0, A_1, \dots, A_{r-1}\) are pairwise commuting bounded operators on \(\mathcal{H}\). \
Such relations naturally arise in the context of the operator-valued moment problem, particularly in the study of flat extensions of block Hankel operators. \ Our first goal is to derive an explicit combinatorial formula for \(T_n\).
As a concrete application, we provide an explicit expression for the powers of an operator-valued companion matrix. \ In the special case of scalar coefficients $A_k=a_kI_\mathcal{H}$, with $a_k\in\mathbb{R}$, we recover a Binet-type formula that allows the explicit computation of the powers and the exponential of algebraic operators in terms of Bell polynomials.

References

  • H. Benkhaldoun, R. Ben Taher and M. Rachidi: Periodic matrix difference equations and companion matrices in blocks: some applications, Arab. J. Math., 10 (3) (2021), 555–574.
  • R. B. Bentaher, M. Rachidi and E. H. Zerouali: Recursive Subnormal Completion and the Truncated Moment Problem, Bull. London Math. Soc., 33 (4) (2001), 425–432.
  • R. B. Bentaher, M. Rachidi: Linear Recurrence Relations in the Algebra of Matrices and Applications, Linear Algebra Appl., 330 (1–3) (2001), 15–24.
  • R. B. Taher, M. Rachidi: On the matrix powers and exponential by the r-generalized Fibonacci sequences methods: the companion matrix case, Linear Algebra Appl., 370 (2003), 341–353.
  • R. B. Bentaher, M. Rachidi: Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula, Appl. Math. Comput., 290 (2016), 267–280.
  • W. Y. C. Chen, J. D. Louck: The combinatorial power of the companion matrix, Linear Algebra Appl., 232 (1996), 261–278.
  • C. E. Chidume, M. Rachidi and E. H. Zerouali: Solving the general truncated moment problem by the r-generalized Fibonacci sequences method, J. Math. Anal. Appl., 256 (2) (2001), 625–635.
  • L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Springer Science & Business Media, New York (2012).
  • R. E. Curto, A. Ech-charyfy, H. El Azhar and E. H. Zerouali: The Local Operator Moment Problem on R, Complex Anal. Oper. Theory, 19 (2) (2025), Article ID: 25.
  • R. E. Curto, A. Ech-charyfy, K. H. Idrissi and E. H. Zerouali: Infinite-dimensional flat extensions in operator moment problems, Preprint (2025).
  • R. E. Curto, A. Ech-charyfy, K. Idrissi and E. H. Zerouali: A Recursive approach to the matrix moment problem, Preprint (2023).
  • R. E. Curto, L. A. Fialkow: Recursiveness, positivity and truncated moment problems, Houston J. Math., 17 (1991), 603–635.
  • R. E. Curto, L. A. Fialkow: Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc., 119 (568) (1996).
  • R. E. Curto, L. A. Fialkow: Flat extensions of positive moment matrices: Recursively generated relations, Mem. Amer. Math. Soc., 136 (648) (1998).
  • P. R. Halmos: What Does the Spectral Theorem Say?, The Amer. Math. Monthly, 70 (3) (1963), 241–247.
  • B. Mourrain, K. Schmüdgen: Flat extensions in ∗-algebras, Proc. Amer. Math. Soc., 144 (11), 4873–4885 (2016).
  • D. P. Kimsey: An operator-valued generalization of Tchakaloff’s Theorem, J. Funct. Anal., 266 (3) (2014), 1170–1184.
  • D. P. Kimsey, M. Trachana: On a solution of the multidimensional truncated matrix-valued moment problem, Milan J. Math., 90 (1) (2022), 17–101.
  • C. Levesque: On mth Order Linear Recurrences, Fibonacci Quart., 23 (4) (1985), 290–295.
  • I. Mez˝o: The r-Bell numbers, J. Integer Seq., 14 (1) (2011), Article ID: 11.1.1.
  • M. Mouline, M. Rachidi: Application of Markov Chains Properties to r-Generalized Fibonacci Sequences, Fibonacci Quart., 37 (1999), 34–38.
  • G. N. Philippou: On the kth Order Linear Recurrence and Some Probability Applications, In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds.), Applications of Fibonacci Numbers, Kluwer Academic Publishers, Dordrecht (1988).
  • K. Schmüdgen: Unbounded Operator Algebras and Representation Theory, vol. 37, Birkhäuser, Progress in Mathematics (2013).
  • V. Tchakaloff: Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sci. Math., 81 (2) (1957), 123–134.
There are 24 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Raul Curto 0000-0002-1776-5080

Abderrazzak Ech-Charyfy 0009-0004-8273-5496

Kaissar Idrissi 0000-0002-3279-4613

El Hassan Zerouali 0000-0001-6240-7859

Early Pub Date December 10, 2025
Publication Date December 15, 2025
Submission Date October 24, 2025
Acceptance Date December 2, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Curto, R., Ech-Charyfy, A., Idrissi, K., Zerouali, E. H. (2025). A combinatorial formula for recursive operator sequences and applications. Constructive Mathematical Analysis, 8(4), 200-216. https://doi.org/10.33205/cma.1809730
AMA Curto R, Ech-Charyfy A, Idrissi K, Zerouali EH. A combinatorial formula for recursive operator sequences and applications. CMA. December 2025;8(4):200-216. doi:10.33205/cma.1809730
Chicago Curto, Raul, Abderrazzak Ech-Charyfy, Kaissar Idrissi, and El Hassan Zerouali. “A Combinatorial Formula for Recursive Operator Sequences and Applications”. Constructive Mathematical Analysis 8, no. 4 (December 2025): 200-216. https://doi.org/10.33205/cma.1809730.
EndNote Curto R, Ech-Charyfy A, Idrissi K, Zerouali EH (December 1, 2025) A combinatorial formula for recursive operator sequences and applications. Constructive Mathematical Analysis 8 4 200–216.
IEEE R. Curto, A. Ech-Charyfy, K. Idrissi, and E. H. Zerouali, “A combinatorial formula for recursive operator sequences and applications”, CMA, vol. 8, no. 4, pp. 200–216, 2025, doi: 10.33205/cma.1809730.
ISNAD Curto, Raul et al. “A Combinatorial Formula for Recursive Operator Sequences and Applications”. Constructive Mathematical Analysis 8/4 (December2025), 200-216. https://doi.org/10.33205/cma.1809730.
JAMA Curto R, Ech-Charyfy A, Idrissi K, Zerouali EH. A combinatorial formula for recursive operator sequences and applications. CMA. 2025;8:200–216.
MLA Curto, Raul et al. “A Combinatorial Formula for Recursive Operator Sequences and Applications”. Constructive Mathematical Analysis, vol. 8, no. 4, 2025, pp. 200-16, doi:10.33205/cma.1809730.
Vancouver Curto R, Ech-Charyfy A, Idrissi K, Zerouali EH. A combinatorial formula for recursive operator sequences and applications. CMA. 2025;8(4):200-16.