Research Article
BibTex RIS Cite

Bioactive Properties of Different Parts of Vitis labrusca L. Fruit

Year 2021, , 193 - 198, 31.12.2021
https://doi.org/10.31594/commagene.1016721

Abstract

Vitus labrusca L. is a fragrant grape variety that is widely grown in our country and the world. In addition to being consumed as a table grape, it is also consumed by processing into different products such as wine, vinegar, and molasses. This fruit and its residues, revealed after processing into the product, are rich in phenolic compounds. The residues of the grape can be evaluated due to their bioactive potential. In this study, the bioactive characteristics of V. labrusca L. grown in Samsun were investigated. Total phenolic, antioxidative activity properties and oleanolic acid levels were determined in order to reveal their bioactive properties. For this purpose, the whole fruits, skin, and seed parts of the fruits were analyzed separately. It is concluded that the highest values as the total phenolics (1519.68±280.05 mg kg-1), oleanolic acid (351.32±91.42 mg kg-1), and antioxidant values (FRAP: 22.13±6.77 µmol Fe2+g-1) were determined in the skin of fruit. Furthermore, when the relationship between the natural antioxidant contents and the antioxidant activity examined, there was a negative correlation between the total phenolics and DPPH reducing value (as EC50). In conclusion, it is considered that the residues of the grape should be evaluated for their bioactive potential due to V. labrusca L. Fruits being rich in bioactive compounds, and these compounds are mainly concentrated in the skin part.

Supporting Institution

This study was supported by Project Management Office of Ondokuz Mayıs University

Project Number

PYO.MUH.1904.15.020

Thanks

This study was supported by Project Management Office of Ondokuz Mayıs University under number PYO.MUH.1904.15.020

References

  • AOAC, (2000). Official Methods of Analysis of the Association of Official Analysis Chemists (17th ed). AOAC International, Gaithersburg, MD.
  • Ayeleso, T.B., Matumba M.G., & Mukwevho, E. (2017). Oleanolic acid and ıts derivatives: biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1915. https://doi.org/10.3390/molecules-22111915
  • Baydar, N.G., Ozkan, G., & Sagdic, O. (2004). Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control, 15, 335-339. https://doi.org/10.1016/S0956-7135(03)00083-5
  • Benmeziane, F., Cadot,Y., Djamai, R., & Djermoun, L. (2016). Determination of major anthocyanin pigments and flavonols in red grape skin of some table grape varieties (Vitis vinifera sp.) by high-performance liquid chromatography–photodiode array detection (HPLC-DAD). OENO One, 50(3), 125-135. https://hal.archives-ouvertes.fr/hal-01606633
  • Benzie, I.F.F., & Szeto, Y.T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 47(2), 633–636. https://doi.org/10.1021/jf9807768
  • Boas, A.C.V., Henrique, P.C., Lima, L.C.O., & Neto, A.D. (2014). Antioxidant activity, anthocyanins and organic acids content of grape juices produced in southwest of Minas Gerais. Brazil Ciência e Agrotecnologia Lavras, 38, 480-486. https://doi.org/10.1590/S1413-70542014000500007
  • Burin, V.M., Falcão, L.D., & Gonzaga, L.V. (2010). Colour, phenolic content and antioxidant activity of grape juice. Ciência e Tecnologia de Alimentos, 30(4), 1027-1032. https://doi.org/10.1590/S0101-20612010000400030
  • Carrieri C., Milella R.A., Incampo F., Crupi P., Antonacci D., Semeraro N., & Colucci M. (2013). Antithrombotic activity of 12 table grape varieties. Relationship with polyphenolic profile. Food Chemistry 140(4), 647-653. https://doi.org/10.1016/j.foodchem.2012.10.132
  • Chronopoulou, L., Agatone, A.C., & Palocci, C. (2013). Supercritical CO2 extraction of oleanolic acid from grape pomace. International Journal of Food Science & Technology, 48(9), 1854-1860. https://doi.org/10.1111/-ijfs.12161
  • De Nisco M., Manfra M., Bolognese, A., Sofo A., Scopa A., Tenore G.C.,…. & Russo M.T. (2013). Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv. Aglianico). Food Chemistry, 140(4), 623-629. https://doi.org/10.1016/j.foodchem.-2012.10.123
  • Dwyer, K., Hosseinian, F., & Rod, M. (2014). The market potential of grape waste alternatives. Journal of Food Research, 3(2), 91-106. https://doi.org/10.5539/jfr.v3n2p91
  • Fava J., Hodara K., Nieto, A., Guerrero S., Alzamora S.M., & Castro M.A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44(9), 2938-2948. https://doi.org/10.1016/j.foodres.2011.06.053
  • Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6, 391-415. https://doi.org/10.3390/nu6010391
  • Jayaprakasha, G.K., Selvi, T., & Sakariah K.K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extract. Food Research International, 36, 117-122. https://doi.org/10.1016/S0963-9969(02)00116-3
  • Kang, Y.M. Lee, M., & An, H.J. (2021). Oleanolic acid protects against mast cell-mediated allergic responses by suppressing Akt/NF-κB and STAT1 activation. Phytomedicine, 80, 153340. https://doi.org/10.1016/j.phy-med.2020.153340
  • Kobra A., Reza H.H., Reyhaneh S., & Atusa V. (2019). Antioxidant activity of aqueous extracts from Vitis vinifera’s wastes. Novel Approches in Drug Designing Development, 4(5), 555646.
  • Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., & Hermosín-Gutiérrez, I. (2011). Phenolic composition of the edible parts (flesh and skin) of bordó grape (Vitis labrusca) using HPLC−DAD−ESI-MS/MS. Journal of Agricultural and Food Chemistry, 59(24), 13136-13146. https://doi.org/10.1021/jf203679n
  • Lara, I., Heredia, A., & Domínguez, E. (2019). Shelf life potential and the fruit cuticle: The unexpected player. Frontiers in Plant Science, 10, 770. 10:770. https://doi.org/10.3389/fpls.2019.00770
  • Liu, T., Zhao, J., Ma, L., Ding, Y., & Su, D. (2012). Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L. against immunological liver injury in mice. Evidence-Based Complementary and Alternative Medicine, 1-8. https://doi.org/10.1155/2012/969386
  • Orbán, N., Kozák I.O., Drávucz M., & Kiss A. (2009). LC-MS method development to evaluate major triterpenes in skins and cuticular waxes of grape berries. International Journal of Food Science and Technology, 44, 869-873. https://doi.org/10.1111/j.1365-2621.2008.01902.x
  • Pensec, F., Paczkowski, C., Grabarczyk, M., Woźniak, A., & Bénard-Gellon, M. (2014). Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the upper Rhine Valley. Journal of Agricultural and Food Chemistry, 62, 7998-8007. https://doi.org/10.1021/jf502033s
  • Rockenbach, I.I, Gonzaga L.V., Rizelio V.M., Gonçalves A.E.S.S., Genovese M.I., & Fett R. (2011a). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera L. and Vitis labrusca L.) pomace from Brazilian winemaking. Food Research International, 44(4), 897-901. https://doi.org/10.1016/j.foodres.2011.01.049
  • Rockenbach, I.I, Rodrigues, E., Gonzaga L.V., Caliari, V., Genovese M.I., Gonçalves A.E.S.S., & Fett, R. (2011b). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174-179. https://doi.org/10.1016/j.foodchem.2010.12.137
  • Sabra, A., Netticadan, T., & Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry, 12, 100149. https://doi.org/10.1016/j.fochx.2021.100149
  • Santos, L.P., Morais, D.R., Souza, N.E., Cottica, S.M. Boroski, M., & Visentainer J. V. (2011). Phenolic compounds and fatty acids in different parts of Vitis labrusca and Vitis vinifera grapes. Food Research International, 44(5), 1414-1418. https://doi.org/10.1016/j.foodres.-2011.02.022
  • Samavardhana, K., Supawititpattana, P., Jittrepotch, N., Kongbangkerd, T., & Rojsuntornkitti, K. (2015). Effects of extracting conditions on phenolic compounds and antioxidant activity from different grape processing byproducts. International Food Research Journal, 22(3), 1169-1179.
  • Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects –A review. Journal of Functional Foods, 18, 820-897. http://dx.doi.org/10.1016/j.jff.2015.06.018
  • Shao, D., Zhang, L., Du, S., Yokoyama, W., Shi, J., Li, N., & Wang, J. (2016). Polyphenolic content and color of seedless and seeded shade dried Chinese raisins. Food Science and Technology Research, 22(3), 359-369. https://doi.org/10.3136/fstr.22.359
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal Enology Viticulture,16(3), 144-158.
  • Tural, S., & Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116(4), 362-366. https://doi.org/10.1016/j.scienta.-2008.02.003
  • Wrolstad, R.E. (1976). Color and pigment analyses in fruit products. In: Station Bulletin 624, Agricultural Experiment Station Oregon State, Corvallis, OR, pp. 1-17.
  • Yamamoto, L.Y., Koyama, R., Assis, A.M., Borges, W.F., Oliveira, I.R., & Roberto, S.R. (2015). Color of berry and juice of 'Isabel' grape treated with abscisic acid in different ripening stages. Pesquisa Agropecuária Brasileira 50(12), 1160-1167. https://doi.org/10.1590/S0100204X-2015001200005
  • Zhang, Y., Xue, K., Zhao, E.Y, Li, Y., Yao, L., Yang, X., & Xie, X. (2013). Determination of oleanolic acid and ursolic acid in Chinese medicinal plants using HPLC with PAH polymeric C18. Pharmacognosy Magazine, 9(36), 19-24. https://doi.org/10.4103/0973-1296.117853

Vitis labrusca L. Meyvesinin Farklı Kısımlarının Biyoaktif Özellikleri

Year 2021, , 193 - 198, 31.12.2021
https://doi.org/10.31594/commagene.1016721

Abstract

Vitus labrusca L. ülkemizde ve dünyada yaygın olarak yetiştirilen kokulu bir üzüm çeşididir. Sofralık üzüm olarak tüketilmesinin yanı sıra şarap, sirke ve pekmez gibi farklı ürünlere işlenerek de tüketilmektedir. Bu meyve ve ürüne işlendikten sonraki kalıntıları fenolik bileşikler açısından zengindir. Üzüm kalıntıları biyoaktif potansiyelleri nedeniyle değerlendirilebilir. Bu çalışmada, Samsun’da yetiştirilen V. labrusca L.’nın biyoaktif özellikleri araştırılmıştır. Biyoaktif özelliklerini ortaya koymak için toplam fenolik madde, antioksidan aktivite özellikleri ve oleanolik asit miktarları belirlenmiştir. Bu amaçla meyveler bütün olarak, kabuk ve çekirdek kısımları ayrı ayrı analiz edilmiştir. Toplam fenolik madde (1519.68±280.05 mg kg-1), oleanolik asit (351.32±91.42 mg kg-1) ve antioksidan aktivite değerleri (FRAP: 22.13±6.77 µmol Fe2+g-1) en fazla meyvelerin kabuk kısmında belirlenmiştir. Ayrıca, doğal antioksidan içerikleri ile antioksidan aktivite arasındaki ilişki incelendiğinde, toplam fenolik madde ile DPPH indirgeme değeri (EC50 olarak) arasında negatif bir ilişki olduğu görülmüştür. Sonuç olarak, V. labrusca L. meyvelerinin biyoaktif bileşiklerce zengin olması ve bu bileşiklerin ağırlıklı olarak kabuk kısmında yoğunlaşması nedeniyle üzüm kalıntılarının biyoaktif potansiyelleri açısından değerlendirilmesi gerektiği düşünülmektedir.

Project Number

PYO.MUH.1904.15.020

References

  • AOAC, (2000). Official Methods of Analysis of the Association of Official Analysis Chemists (17th ed). AOAC International, Gaithersburg, MD.
  • Ayeleso, T.B., Matumba M.G., & Mukwevho, E. (2017). Oleanolic acid and ıts derivatives: biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1915. https://doi.org/10.3390/molecules-22111915
  • Baydar, N.G., Ozkan, G., & Sagdic, O. (2004). Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control, 15, 335-339. https://doi.org/10.1016/S0956-7135(03)00083-5
  • Benmeziane, F., Cadot,Y., Djamai, R., & Djermoun, L. (2016). Determination of major anthocyanin pigments and flavonols in red grape skin of some table grape varieties (Vitis vinifera sp.) by high-performance liquid chromatography–photodiode array detection (HPLC-DAD). OENO One, 50(3), 125-135. https://hal.archives-ouvertes.fr/hal-01606633
  • Benzie, I.F.F., & Szeto, Y.T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 47(2), 633–636. https://doi.org/10.1021/jf9807768
  • Boas, A.C.V., Henrique, P.C., Lima, L.C.O., & Neto, A.D. (2014). Antioxidant activity, anthocyanins and organic acids content of grape juices produced in southwest of Minas Gerais. Brazil Ciência e Agrotecnologia Lavras, 38, 480-486. https://doi.org/10.1590/S1413-70542014000500007
  • Burin, V.M., Falcão, L.D., & Gonzaga, L.V. (2010). Colour, phenolic content and antioxidant activity of grape juice. Ciência e Tecnologia de Alimentos, 30(4), 1027-1032. https://doi.org/10.1590/S0101-20612010000400030
  • Carrieri C., Milella R.A., Incampo F., Crupi P., Antonacci D., Semeraro N., & Colucci M. (2013). Antithrombotic activity of 12 table grape varieties. Relationship with polyphenolic profile. Food Chemistry 140(4), 647-653. https://doi.org/10.1016/j.foodchem.2012.10.132
  • Chronopoulou, L., Agatone, A.C., & Palocci, C. (2013). Supercritical CO2 extraction of oleanolic acid from grape pomace. International Journal of Food Science & Technology, 48(9), 1854-1860. https://doi.org/10.1111/-ijfs.12161
  • De Nisco M., Manfra M., Bolognese, A., Sofo A., Scopa A., Tenore G.C.,…. & Russo M.T. (2013). Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv. Aglianico). Food Chemistry, 140(4), 623-629. https://doi.org/10.1016/j.foodchem.-2012.10.123
  • Dwyer, K., Hosseinian, F., & Rod, M. (2014). The market potential of grape waste alternatives. Journal of Food Research, 3(2), 91-106. https://doi.org/10.5539/jfr.v3n2p91
  • Fava J., Hodara K., Nieto, A., Guerrero S., Alzamora S.M., & Castro M.A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44(9), 2938-2948. https://doi.org/10.1016/j.foodres.2011.06.053
  • Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6, 391-415. https://doi.org/10.3390/nu6010391
  • Jayaprakasha, G.K., Selvi, T., & Sakariah K.K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extract. Food Research International, 36, 117-122. https://doi.org/10.1016/S0963-9969(02)00116-3
  • Kang, Y.M. Lee, M., & An, H.J. (2021). Oleanolic acid protects against mast cell-mediated allergic responses by suppressing Akt/NF-κB and STAT1 activation. Phytomedicine, 80, 153340. https://doi.org/10.1016/j.phy-med.2020.153340
  • Kobra A., Reza H.H., Reyhaneh S., & Atusa V. (2019). Antioxidant activity of aqueous extracts from Vitis vinifera’s wastes. Novel Approches in Drug Designing Development, 4(5), 555646.
  • Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., & Hermosín-Gutiérrez, I. (2011). Phenolic composition of the edible parts (flesh and skin) of bordó grape (Vitis labrusca) using HPLC−DAD−ESI-MS/MS. Journal of Agricultural and Food Chemistry, 59(24), 13136-13146. https://doi.org/10.1021/jf203679n
  • Lara, I., Heredia, A., & Domínguez, E. (2019). Shelf life potential and the fruit cuticle: The unexpected player. Frontiers in Plant Science, 10, 770. 10:770. https://doi.org/10.3389/fpls.2019.00770
  • Liu, T., Zhao, J., Ma, L., Ding, Y., & Su, D. (2012). Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L. against immunological liver injury in mice. Evidence-Based Complementary and Alternative Medicine, 1-8. https://doi.org/10.1155/2012/969386
  • Orbán, N., Kozák I.O., Drávucz M., & Kiss A. (2009). LC-MS method development to evaluate major triterpenes in skins and cuticular waxes of grape berries. International Journal of Food Science and Technology, 44, 869-873. https://doi.org/10.1111/j.1365-2621.2008.01902.x
  • Pensec, F., Paczkowski, C., Grabarczyk, M., Woźniak, A., & Bénard-Gellon, M. (2014). Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the upper Rhine Valley. Journal of Agricultural and Food Chemistry, 62, 7998-8007. https://doi.org/10.1021/jf502033s
  • Rockenbach, I.I, Gonzaga L.V., Rizelio V.M., Gonçalves A.E.S.S., Genovese M.I., & Fett R. (2011a). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera L. and Vitis labrusca L.) pomace from Brazilian winemaking. Food Research International, 44(4), 897-901. https://doi.org/10.1016/j.foodres.2011.01.049
  • Rockenbach, I.I, Rodrigues, E., Gonzaga L.V., Caliari, V., Genovese M.I., Gonçalves A.E.S.S., & Fett, R. (2011b). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174-179. https://doi.org/10.1016/j.foodchem.2010.12.137
  • Sabra, A., Netticadan, T., & Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry, 12, 100149. https://doi.org/10.1016/j.fochx.2021.100149
  • Santos, L.P., Morais, D.R., Souza, N.E., Cottica, S.M. Boroski, M., & Visentainer J. V. (2011). Phenolic compounds and fatty acids in different parts of Vitis labrusca and Vitis vinifera grapes. Food Research International, 44(5), 1414-1418. https://doi.org/10.1016/j.foodres.-2011.02.022
  • Samavardhana, K., Supawititpattana, P., Jittrepotch, N., Kongbangkerd, T., & Rojsuntornkitti, K. (2015). Effects of extracting conditions on phenolic compounds and antioxidant activity from different grape processing byproducts. International Food Research Journal, 22(3), 1169-1179.
  • Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects –A review. Journal of Functional Foods, 18, 820-897. http://dx.doi.org/10.1016/j.jff.2015.06.018
  • Shao, D., Zhang, L., Du, S., Yokoyama, W., Shi, J., Li, N., & Wang, J. (2016). Polyphenolic content and color of seedless and seeded shade dried Chinese raisins. Food Science and Technology Research, 22(3), 359-369. https://doi.org/10.3136/fstr.22.359
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal Enology Viticulture,16(3), 144-158.
  • Tural, S., & Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116(4), 362-366. https://doi.org/10.1016/j.scienta.-2008.02.003
  • Wrolstad, R.E. (1976). Color and pigment analyses in fruit products. In: Station Bulletin 624, Agricultural Experiment Station Oregon State, Corvallis, OR, pp. 1-17.
  • Yamamoto, L.Y., Koyama, R., Assis, A.M., Borges, W.F., Oliveira, I.R., & Roberto, S.R. (2015). Color of berry and juice of 'Isabel' grape treated with abscisic acid in different ripening stages. Pesquisa Agropecuária Brasileira 50(12), 1160-1167. https://doi.org/10.1590/S0100204X-2015001200005
  • Zhang, Y., Xue, K., Zhao, E.Y, Li, Y., Yao, L., Yang, X., & Xie, X. (2013). Determination of oleanolic acid and ursolic acid in Chinese medicinal plants using HPLC with PAH polymeric C18. Pharmacognosy Magazine, 9(36), 19-24. https://doi.org/10.4103/0973-1296.117853
There are 33 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

İlkay Koca 0000-0001-6089-8586

Belkis Tekgüler 0000-0001-7850-8013

Burcin Türkyılmaz This is me 0000-0001-8949-5852

Project Number PYO.MUH.1904.15.020
Publication Date December 31, 2021
Submission Date October 31, 2021
Acceptance Date December 15, 2021
Published in Issue Year 2021

Cite

APA Koca, İ., Tekgüler, B., & Türkyılmaz, B. (2021). Bioactive Properties of Different Parts of Vitis labrusca L. Fruit. Commagene Journal of Biology, 5(2), 193-198. https://doi.org/10.31594/commagene.1016721
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.