Research Article
BibTex RIS Cite

Deniz Makroalgi Codium fragile (Suringar) Hariot ’in Kimyasal Bileşimi, In-Vitro Antimikrobiyal ve Antioksidan Aktivitelerinin Analizi

Year 2022, , 94 - 104, 30.06.2022
https://doi.org/10.31594/commagene.1084336

Abstract

Sucul alanlarda yaşayan birincil üreticiler olan deniz algleri, önemleri nedeniyle birçok araştırmaya konu olmakla birlikte ilaç, kozmetik, gıda, yakıt ve tekstil endüstrilerinde önemli rol oynayan ökaryotik ve ötrofik organizmalardır. Makroalgler, potansiyel farmakolojik kullanımları olan birkaç makro besin, mikro besin ve diğer önemli biyolojik olarak aktif bileşikler (örneğin polifenoller, enzimler ve antibiyotikler) üretmesiyle bilinmektedir. Bu araştırmada, Codium fragile (Suringar) Hariot 1889’un metanol, etanol, aseton ve su ekstrelerinin kimyasal bileşimi, antimikrobiyal ve antioksidan aktiviteleri (3 yöntem ile), toplam fenolik (TPC) ve flavonoid (TFC) içeriklerini araştırmayı amaçlandı. LC-ESI-MS/MS analizleri gallik asit, 4-hidroksibenzaldehit, 4-hidroksibenzoik asit, p-kumarik asit, salisilik asit, biokanin A ve diosgenin içeren yedi bileşiğin tanımlanmasına izin verdi. Ekstrelerin TPC ve TFC değerleri sırasıyla 10,34±0,13-64,67±0,02 µg GAEs/mg ekstre ve 12,73±2,68-36,78±1,08 µg QEs/mg ekstre olarak hesaplandı. Metanol, etanol ve aseton ekstreleri gram negatif ve gram pozitif bakterilere karşı farklı seviyelerde aktivite göstermiştir (MİK: 3.125-1.562 mg/mL). Su ekstresi ABTS•+ (%70,43±14,85) ve DPPH• (%72,61±11,44) testlerine en yüksek aktiviteyi gösterirken, aseton ekstresi CUPRAC (absorbans: 0,60±0,15) testinde en yüksek aktiviteyi gösterdi. Elde ettiğimiz sonuçlar, C. fragile'in gıda koruyucuları ve diğer endüstriyel ve farmasötik alanlarda doğal bir biyoaktif madde kaynağı olarak değerlendirilebileceğini onaylamaktadır.

Supporting Institution

Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü(BAP)

Project Number

20111001

Thanks

Bu çalışmamızı 20111001 nolu proje ile deteklerinden dolayı Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü(BAP)'ne teşekkür ederiz.

References

  • Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., & Schenk, P.M. (2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, 28(12), 1834-1841. https://doi.org/10.1016/j.jsps.2020.11.010
  • Arguelles, E.D.L.R., Laurena, A.C., Monsalud, R.G., & Martinez-Goss, M.R. (2019a). High lipid and protein-producing epilithic microalga Desmodesmus sp. (U-AU2): A promising alternative feedstock for biodiesel and animal feed production. Philippine Journal of Crop Science, 44(2), 13-23.
  • Arguelles, E.D.L.R., Monsalud, R.G., & Sapin, A.B., (2019b). Chemical composition and in vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. Journal of the International Society for Southeast Asian Agricultural Sciences, 25(1), 112-122.
  • Arguelles, E.D. (2020). Evaluation of Nutritional Composition and in vitro Antioxidant and Antibacterial Activities of Codium intricatum Okamura from Ilocos Norte (Philippines). Jordan Journal of Biological Sciences, 13(3), 375-382.
  • Aşıkkutlu, B., & Okudan, E.Ş. (2021). Macro and trace element levels of macroalgae Cystoseira foeniculacea ve Gongolaria montagnei species from mediterranean region (Antalya/ Turkey). Journal of Anatolian Environmental and Animal Sciences, 6(4), 757-764. https://doi.org/10.35229/jaes.950591
  • Chaudhary, S.A., Chaudhary, P.S., Syed, B.A., Mira, R., Bagali, P.G., Vitalini, S., & Iriti, M. (2018). Validation of a method for diosgenin extraction from Fenugreek (Trigonella foenum-graecum L.). Acta Scientiarum Polonorum, Technologia Alimentaria, 17(4), 377-385. http://doi.org/10.17306/J.AFS.2018.0606
  • Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of Abnormal Psychology, 65, 145-153. https://doi.org/10.1037/h0045186.
  • Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences, Academic Press, New York.
  • Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Gonçalves, A.M.M., da Silva, G.J., & Pereira, L. (2020). Seaweed phenolics: from extraction to applications. Marine Drugs, 18, 384. http://doi.org/10.3390/md18080384
  • Cragg, G.M., & Newman, D.J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830, 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Crato, E. (1893). Morphologische und mikrochemische Untersuchungen über die Physoden. Botanische Zeitung, 195, 155 pp.
  • Çayan, F., Tel-Çayan, G., Deveci, E., Öztürk, M., & Duru, M.E. (2019). Chemical profile, in vitro enzyme ınhibitory, and antioxidant properties of Stereum species (Agaricomycetes) from Turkey. International Journal of Medicinal Mushrooms, 21, 1075-1087. https://doi.org/10.1615/IntJMedMushrooms.2019032893.
  • Demirel, Z., Yilmaz-Koz, F. F., Karabay-Yavasoglu, U. N., Ozdemir, G., & Sukatar, A. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628.
  • Farvin, K.H.S, & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138, 1670-1681. https://doi.org/10.1016/j.foodchem.2012.10.078.
  • Frikha, F., Kammoun, M., Hammami, N., Mchirgui, R., Belbahri, L., Gargouri, Y., Miled, N., & Ben-Rebah, F. (2011). Chemical composition and some biological activities of marine algae collected in Tunisia. Ciencias Marinas, 37 (2), 113-124.
  • Garcia-Vaquero, M., O’Doherty, J.V., Tiwari, B.K., Sweeney, T., & Rajauria, G. (2019). Enhancing the Extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extraction followed by ultrasound and thermal technologies. Marine Drugs, 17, 457. http://doi.org/10.3390/md17080457
  • Gonzalez, G., Brownlee, D., & Ward, P. (2001). The galactic habitable zone: galactic chemical evolution. Icarus, 152(1), 185-200.
  • Gümüş, N.E., Aşıkkutlu, B., Keskinkaya, H.B., & Akköz, C. (2021). Comparison of heavy metal absorption of some algae ısolated from Altınapa Dam Lake (Konya). Journal of Anatolian Environmental and Animal Sciences, 6(1), 50-56. https://doi.org/10.35229/jaes.809876
  • Heffernan, N., Smyth, T.J., Soler-Villa, A., Fitzgerald, R.J., & Brunton, N.P. (2015). Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 27, 519-530. https://doi.org/10.1007/s10811-014-0291-9.
  • Hernández-Vázquez, J.M.V., López-Muñoz, H., Escobar-Sánchez, M.L., Flores-Guzmán, F., Weiss-Steider, B., Hilario-Martínez, J.C., Sandoval-Ramírez, J., Fernández-Herrera, M.A., & Sánchez, L.S. (2020). Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. European Journal of Pharmacology, 871, 172942. https://doi.org/10.1016/j.ejphar.2020.172942.
  • Ibtissam, C., Hassane, R., Jose, M., Francisco, D.S.J., Antonio, G.V.J., Hassan, B., & Mohamed, K. (2009). Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. African Journal of Biotechnology, 8(7), 1258-1262.
  • Jun, J.Y., Jung, M.J., Jeong, I.H., Yamazaki, K., Kawai, Y., & Kim, B.M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine drugs, 16(9), 301. https://doi.org/10.3390/md16090301
  • Kadam, S.U., Tiwari, B.K., & O’Donnell, C.P. (2019). Application of Novel Extraction Technologies for Bioactives from Marine Algae. Journal of Agricultural and Food Chemistry, 61, 4667−4675. https://doi.org/10.1021/jf400819p
  • Kandhasamy, M., & Arunachalam, K.D. (2008). Evaluation of in vitro antibacterial property of seaweeds of southeast coast of India. African Journal of Biotechnology, 7(12), 1958-1961. https://doi.org/10.5897/AJB08.120
  • Keskinkaya, H.B., Gümüş, N.E., Aşıkkutlu, B., Akköz, C., Okudan, E.Ş., & Karakurt, S. (2020). Macro and trace element levels of green algae Codium fragile (Suringar) Hariot 1889 from Dardanelles (Çanakkale/Turkey). Anadolu Orman Araştırmaları Dergisi, 6(2), 55-61. https://doi.org/10.35229/jaes.809876
  • Kim, A.D., Lee, Y., Kang, S-H., Kim, G.Y., Kim, H.S. & Hyun, J.W. (2013). Cytotoxic effect of clerosterol isolated from Codium fragile on A2058 human melanoma cells. Marine drugs, 11(2), 418-430. https://doi.org/10.3390/md11020418
  • Kolsi, R.B.A., Salah, H.B., Hamza, A., El-feki, A., Allouche, N., El-feki, L., & Belguith, K. (2017). Characterization and evaluating of antioxidant and antihypertensive properties of green alga (Codium fragile) from the coast of Sfax. Journal of Pharmacognosy and Phytochemistry, 6(2), 186-191.
  • Koz, F.F.Y., Yavasoglu, N.U.Y, Demirel, Z., Sukatar, A., & Ozdemir, G. (2009). Antioxidant and antimicrobial activities of Codium fragile (Suringar) Hariot (Chlorophyta) essential oil and extracts. Asian Journal of Chemistry, 21, 1197-1209.
  • Kumar, Y., Singhal, S., Tarafdar, A., Pharande, A., Ganesan, M., & Badgujar, P.C. (2020). Ultrasound assisted extraction of selected edible macroalgae: Effect on antioxidant activity and quantitative assessment of polyphenols by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Algal Research, 52, 102114. https://doi.org/10.1016/j.algal.2020.102114.
  • Liao, W.R., Lin, J.Y., Shieh, W.Y., Jeng, W.L., & Huang, R. (2003). Antibiotic activity of lectins from marine algae against marine vibrios. Journal of Industrial Microbiology and Biotechnology, 30(7), 433-439.
  • Lima-Filho, J.V.M., Carvalho, A.F., Freitas, S.M., & Melo, V.M. (2002). Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Brazilian Journal of Microbiology, 33, 311-314. https://doi.org/10.1590/S1517-83822002000400006
  • Liu, M., Liu, Y., Cao, M.J., Liu, G.M., Chen, Q., Sun, L., & Chen, H. (2017). Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydrate Polymers, 172, 294–305. https://doi.org/10.1016/j.carbpol.2017.05.060
  • Mekinic, I.G., Skroza, D., Šimat, V., Hamed, I., Cagalj, M., & Perkovic, Z.P. (2019). Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules, 9, 244. http://doi.org/10.3390/biom9060244.
  • Moreau, J., Pesando, D., Bernard, P., Caram, B., & Pionnat, J. C. (1988). Seasonal variations in the production of antifungal substances by some dictyotales (brown algae) from the French Mediterranean coast. Hydrobiologia, 162(2), 157-162.
  • Muraguri, E.N., Wakibia, J.G., & Kinyuru, J.N. (2016). Chemical composition and functional properties of selected seaweeds from the Kenya coast. Journal of Food Research, 5(6), 114-123. http://dx.doi.org/10.5539/jfr.v5n6p114
  • Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98-104. https://doi.org/10.1016/j.foodchem.2005.07.027
  • Park, Y.K., Koo, M.H., Ikegaki, M., & Contado, J.L. (1997). Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Brazilian Archives of Biology and Technology, 40, 97-106.
  • Perez-Perez, G. I., Taylor, D. N., Bodhidatta, L., Wongsrichanalai, J., Baze, W. B., Dunn, B. E., ... & Blaser, M. J. (1990). Seroprevalence of Helicobacter pylori infections in Thailand. Journal of Infectious Diseases, 161(6), 1237-1241.
  • Rajasulochana, P., Dhamotharan, R., Krishnamoorthy, P., & Murugesan, S. (2009). Antibacterial activity of the extracts of marine red and brown algae. Journal of American Science, 5(3), 20-25.
  • Schoenwaelder, M.E.A. (2002). The occurrence and cellular significance of physodes in brown algae. Phycologia, 41, 125-139. https://doi.org/10.2216/i0031-8884-41-2-125.1
  • Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs, 14(4), 81. https://doi.org/10.3390/md14040081 Slinkard, K., & Singleton, V.L. (1977) Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • Surget, G., Roberto, V.P., Lann, K.L., Mira, S., Guérard, F., Laizé, V., Poupart, N., Cancela, M.L., & Stiger-Pouvreau, V. (2017). Marine green macroalgae: a source of natural compounds with mineralogenic and antioxidant activities. Journal of Applied Phycology, 29, 575-584. https://doi.org/10.1007/s10811-016-0968-3.
  • Taskin E., Ozturk, M., & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6, 27462751. https://doi.org/10.5897/AJB2007.000-2439
  • Tortora, G.J., Funke, B.R., & Case, C.L. (2001). Microbiology: An Introduction. Benjamin Cummings. San Francisco, 88.
  • Witschi, H., & Lock, S. (1978). Toxicity of butylated hydroxytoluene in mouse following oral administration. Toxicology, 9, 137–146. https://doi.org/10.1016/0300-483X(78)90038-0
  • Yılmaz, M.A., (2020). Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: a detailed, robust and comprehensive LC–MS/MS method validation. Industrial Crops and Products, 149, 112347. https://doi.org/10.1016/j.indcrop.2020.112347
  • Yırtıcı, Ü., Ergene, A., Atalar, M.N., & Adem, Ş. (2022). Phytochemical composition, antioxidant, enzyme inhibition, antimicrobial effects, and molecular docking studies of Centaurea sivasica. South African Journal of Botany, 144, 58-71. https://doi.org/10.1016/j.sajb.2021.08.043
  • Yu, C., Zhang, P., Lou, L., & Wang, Y. (2019). Perspectives Regarding the role of biochanin A in humans. Frontiers in Pharmacology, 10, 793. http://doi.org/10.3389/fphar.2019.00793.
  • Zhong, B., Robinson, N.A., Warner, R.D., Barrow, C.J., Dunshea, F.R., & Suleria, H.A.R. (2020). LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Marine Drugs, 18, 331. http://doi.org/10.3390/md18060331.

Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of Marine Macroalgae Codium fragile (Suringar) Hariot

Year 2022, , 94 - 104, 30.06.2022
https://doi.org/10.31594/commagene.1084336

Abstract

Marine algae, which are the primary producers living in aquatic areas, are the subject of many studies due to their importance as they are eukaryotic and eutrophic organisms that play a crucial role in the pharmaceutical, cosmetic, food, fuel, and textile industries. Macroalgae are known in producing several macronutrients, micronutrients, and other important biologically active compounds (e.g. polyphenols, enzymes, and antibiotics) with potential pharmacological uses. In this research, we aimed to investigate the chemical composition, antimicrobial and antioxidant activities (with three assays), total phenolic (TPC) and flavonoid (TFC) contents of the methanol, ethanol, acetone, and water extracts of Codium fragile (Suringar) Hariot. The LC-ESI-MS/MS assessment allowed the identification of seven compounds containing gallic acid, 4-hydroxybenzaldehyde, 4-hidroxybenzoic acid, p-coumaric acid, salicylic acid, biochanin A, and diosgenin. TPC and TFC of the extracts were calculated as in the range of 10.34±0.13-64.67±0.02 µg GAEs/mg extract and 12.73±2.68-36.78±1.08 µg QEs/mg extract, respectively. All extracts of C. fragile showed antimicrobial activity against all test pathogens at different levels. The methanol, ethanol, and acetone extracts showed different levels of activity against gram-negative and gram-positive bacteria (MIC: 3.125-1.562 mg/mL). The water extract showed the highest activity in ABTS•+ (70.43±14.85%) and DPPH• (72.61±11.44%) assays while the acetone extract exhibited the best activity in CUPRAC (absorbance: 0.60±0.15) assay. The results we obtained approved that C. fragile could be valued as a natural source of bioactive agents for food preservatives and in other industrial and pharmaceutical fields.

Project Number

20111001

References

  • Alsenani, F., Tupally, K.R., Chua, E.T., Eltanahy, E., Alsufyani, H., Parekh, H.S., & Schenk, P.M. (2020). Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharmaceutical Journal, 28(12), 1834-1841. https://doi.org/10.1016/j.jsps.2020.11.010
  • Arguelles, E.D.L.R., Laurena, A.C., Monsalud, R.G., & Martinez-Goss, M.R. (2019a). High lipid and protein-producing epilithic microalga Desmodesmus sp. (U-AU2): A promising alternative feedstock for biodiesel and animal feed production. Philippine Journal of Crop Science, 44(2), 13-23.
  • Arguelles, E.D.L.R., Monsalud, R.G., & Sapin, A.B., (2019b). Chemical composition and in vitro antioxidant and antibacterial activities of Sargassum vulgare C. Agardh from Lobo, Batangas, Philippines. Journal of the International Society for Southeast Asian Agricultural Sciences, 25(1), 112-122.
  • Arguelles, E.D. (2020). Evaluation of Nutritional Composition and in vitro Antioxidant and Antibacterial Activities of Codium intricatum Okamura from Ilocos Norte (Philippines). Jordan Journal of Biological Sciences, 13(3), 375-382.
  • Aşıkkutlu, B., & Okudan, E.Ş. (2021). Macro and trace element levels of macroalgae Cystoseira foeniculacea ve Gongolaria montagnei species from mediterranean region (Antalya/ Turkey). Journal of Anatolian Environmental and Animal Sciences, 6(4), 757-764. https://doi.org/10.35229/jaes.950591
  • Chaudhary, S.A., Chaudhary, P.S., Syed, B.A., Mira, R., Bagali, P.G., Vitalini, S., & Iriti, M. (2018). Validation of a method for diosgenin extraction from Fenugreek (Trigonella foenum-graecum L.). Acta Scientiarum Polonorum, Technologia Alimentaria, 17(4), 377-385. http://doi.org/10.17306/J.AFS.2018.0606
  • Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of Abnormal Psychology, 65, 145-153. https://doi.org/10.1037/h0045186.
  • Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences, Academic Press, New York.
  • Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Gonçalves, A.M.M., da Silva, G.J., & Pereira, L. (2020). Seaweed phenolics: from extraction to applications. Marine Drugs, 18, 384. http://doi.org/10.3390/md18080384
  • Cragg, G.M., & Newman, D.J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830, 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Crato, E. (1893). Morphologische und mikrochemische Untersuchungen über die Physoden. Botanische Zeitung, 195, 155 pp.
  • Çayan, F., Tel-Çayan, G., Deveci, E., Öztürk, M., & Duru, M.E. (2019). Chemical profile, in vitro enzyme ınhibitory, and antioxidant properties of Stereum species (Agaricomycetes) from Turkey. International Journal of Medicinal Mushrooms, 21, 1075-1087. https://doi.org/10.1615/IntJMedMushrooms.2019032893.
  • Demirel, Z., Yilmaz-Koz, F. F., Karabay-Yavasoglu, U. N., Ozdemir, G., & Sukatar, A. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628.
  • Farvin, K.H.S, & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138, 1670-1681. https://doi.org/10.1016/j.foodchem.2012.10.078.
  • Frikha, F., Kammoun, M., Hammami, N., Mchirgui, R., Belbahri, L., Gargouri, Y., Miled, N., & Ben-Rebah, F. (2011). Chemical composition and some biological activities of marine algae collected in Tunisia. Ciencias Marinas, 37 (2), 113-124.
  • Garcia-Vaquero, M., O’Doherty, J.V., Tiwari, B.K., Sweeney, T., & Rajauria, G. (2019). Enhancing the Extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extraction followed by ultrasound and thermal technologies. Marine Drugs, 17, 457. http://doi.org/10.3390/md17080457
  • Gonzalez, G., Brownlee, D., & Ward, P. (2001). The galactic habitable zone: galactic chemical evolution. Icarus, 152(1), 185-200.
  • Gümüş, N.E., Aşıkkutlu, B., Keskinkaya, H.B., & Akköz, C. (2021). Comparison of heavy metal absorption of some algae ısolated from Altınapa Dam Lake (Konya). Journal of Anatolian Environmental and Animal Sciences, 6(1), 50-56. https://doi.org/10.35229/jaes.809876
  • Heffernan, N., Smyth, T.J., Soler-Villa, A., Fitzgerald, R.J., & Brunton, N.P. (2015). Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). Journal of Applied Phycology, 27, 519-530. https://doi.org/10.1007/s10811-014-0291-9.
  • Hernández-Vázquez, J.M.V., López-Muñoz, H., Escobar-Sánchez, M.L., Flores-Guzmán, F., Weiss-Steider, B., Hilario-Martínez, J.C., Sandoval-Ramírez, J., Fernández-Herrera, M.A., & Sánchez, L.S. (2020). Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. European Journal of Pharmacology, 871, 172942. https://doi.org/10.1016/j.ejphar.2020.172942.
  • Ibtissam, C., Hassane, R., Jose, M., Francisco, D.S.J., Antonio, G.V.J., Hassan, B., & Mohamed, K. (2009). Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. African Journal of Biotechnology, 8(7), 1258-1262.
  • Jun, J.Y., Jung, M.J., Jeong, I.H., Yamazaki, K., Kawai, Y., & Kim, B.M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine drugs, 16(9), 301. https://doi.org/10.3390/md16090301
  • Kadam, S.U., Tiwari, B.K., & O’Donnell, C.P. (2019). Application of Novel Extraction Technologies for Bioactives from Marine Algae. Journal of Agricultural and Food Chemistry, 61, 4667−4675. https://doi.org/10.1021/jf400819p
  • Kandhasamy, M., & Arunachalam, K.D. (2008). Evaluation of in vitro antibacterial property of seaweeds of southeast coast of India. African Journal of Biotechnology, 7(12), 1958-1961. https://doi.org/10.5897/AJB08.120
  • Keskinkaya, H.B., Gümüş, N.E., Aşıkkutlu, B., Akköz, C., Okudan, E.Ş., & Karakurt, S. (2020). Macro and trace element levels of green algae Codium fragile (Suringar) Hariot 1889 from Dardanelles (Çanakkale/Turkey). Anadolu Orman Araştırmaları Dergisi, 6(2), 55-61. https://doi.org/10.35229/jaes.809876
  • Kim, A.D., Lee, Y., Kang, S-H., Kim, G.Y., Kim, H.S. & Hyun, J.W. (2013). Cytotoxic effect of clerosterol isolated from Codium fragile on A2058 human melanoma cells. Marine drugs, 11(2), 418-430. https://doi.org/10.3390/md11020418
  • Kolsi, R.B.A., Salah, H.B., Hamza, A., El-feki, A., Allouche, N., El-feki, L., & Belguith, K. (2017). Characterization and evaluating of antioxidant and antihypertensive properties of green alga (Codium fragile) from the coast of Sfax. Journal of Pharmacognosy and Phytochemistry, 6(2), 186-191.
  • Koz, F.F.Y., Yavasoglu, N.U.Y, Demirel, Z., Sukatar, A., & Ozdemir, G. (2009). Antioxidant and antimicrobial activities of Codium fragile (Suringar) Hariot (Chlorophyta) essential oil and extracts. Asian Journal of Chemistry, 21, 1197-1209.
  • Kumar, Y., Singhal, S., Tarafdar, A., Pharande, A., Ganesan, M., & Badgujar, P.C. (2020). Ultrasound assisted extraction of selected edible macroalgae: Effect on antioxidant activity and quantitative assessment of polyphenols by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Algal Research, 52, 102114. https://doi.org/10.1016/j.algal.2020.102114.
  • Liao, W.R., Lin, J.Y., Shieh, W.Y., Jeng, W.L., & Huang, R. (2003). Antibiotic activity of lectins from marine algae against marine vibrios. Journal of Industrial Microbiology and Biotechnology, 30(7), 433-439.
  • Lima-Filho, J.V.M., Carvalho, A.F., Freitas, S.M., & Melo, V.M. (2002). Antibacterial activity of extracts of six macroalgae from the northeastern Brazilian coast. Brazilian Journal of Microbiology, 33, 311-314. https://doi.org/10.1590/S1517-83822002000400006
  • Liu, M., Liu, Y., Cao, M.J., Liu, G.M., Chen, Q., Sun, L., & Chen, H. (2017). Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydrate Polymers, 172, 294–305. https://doi.org/10.1016/j.carbpol.2017.05.060
  • Mekinic, I.G., Skroza, D., Šimat, V., Hamed, I., Cagalj, M., & Perkovic, Z.P. (2019). Phenolic content of brown algae (Pheophyceae) species: extraction, identification, and quantification. Biomolecules, 9, 244. http://doi.org/10.3390/biom9060244.
  • Moreau, J., Pesando, D., Bernard, P., Caram, B., & Pionnat, J. C. (1988). Seasonal variations in the production of antifungal substances by some dictyotales (brown algae) from the French Mediterranean coast. Hydrobiologia, 162(2), 157-162.
  • Muraguri, E.N., Wakibia, J.G., & Kinyuru, J.N. (2016). Chemical composition and functional properties of selected seaweeds from the Kenya coast. Journal of Food Research, 5(6), 114-123. http://dx.doi.org/10.5539/jfr.v5n6p114
  • Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98-104. https://doi.org/10.1016/j.foodchem.2005.07.027
  • Park, Y.K., Koo, M.H., Ikegaki, M., & Contado, J.L. (1997). Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Brazilian Archives of Biology and Technology, 40, 97-106.
  • Perez-Perez, G. I., Taylor, D. N., Bodhidatta, L., Wongsrichanalai, J., Baze, W. B., Dunn, B. E., ... & Blaser, M. J. (1990). Seroprevalence of Helicobacter pylori infections in Thailand. Journal of Infectious Diseases, 161(6), 1237-1241.
  • Rajasulochana, P., Dhamotharan, R., Krishnamoorthy, P., & Murugesan, S. (2009). Antibacterial activity of the extracts of marine red and brown algae. Journal of American Science, 5(3), 20-25.
  • Schoenwaelder, M.E.A. (2002). The occurrence and cellular significance of physodes in brown algae. Phycologia, 41, 125-139. https://doi.org/10.2216/i0031-8884-41-2-125.1
  • Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Marine Drugs, 14(4), 81. https://doi.org/10.3390/md14040081 Slinkard, K., & Singleton, V.L. (1977) Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • Surget, G., Roberto, V.P., Lann, K.L., Mira, S., Guérard, F., Laizé, V., Poupart, N., Cancela, M.L., & Stiger-Pouvreau, V. (2017). Marine green macroalgae: a source of natural compounds with mineralogenic and antioxidant activities. Journal of Applied Phycology, 29, 575-584. https://doi.org/10.1007/s10811-016-0968-3.
  • Taskin E., Ozturk, M., & Kurt, O. (2007). Antibacterial activities of some marine algae from the Aegean Sea (Turkey). African Journal of Biotechnology, 6, 27462751. https://doi.org/10.5897/AJB2007.000-2439
  • Tortora, G.J., Funke, B.R., & Case, C.L. (2001). Microbiology: An Introduction. Benjamin Cummings. San Francisco, 88.
  • Witschi, H., & Lock, S. (1978). Toxicity of butylated hydroxytoluene in mouse following oral administration. Toxicology, 9, 137–146. https://doi.org/10.1016/0300-483X(78)90038-0
  • Yılmaz, M.A., (2020). Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: a detailed, robust and comprehensive LC–MS/MS method validation. Industrial Crops and Products, 149, 112347. https://doi.org/10.1016/j.indcrop.2020.112347
  • Yırtıcı, Ü., Ergene, A., Atalar, M.N., & Adem, Ş. (2022). Phytochemical composition, antioxidant, enzyme inhibition, antimicrobial effects, and molecular docking studies of Centaurea sivasica. South African Journal of Botany, 144, 58-71. https://doi.org/10.1016/j.sajb.2021.08.043
  • Yu, C., Zhang, P., Lou, L., & Wang, Y. (2019). Perspectives Regarding the role of biochanin A in humans. Frontiers in Pharmacology, 10, 793. http://doi.org/10.3389/fphar.2019.00793.
  • Zhong, B., Robinson, N.A., Warner, R.D., Barrow, C.J., Dunshea, F.R., & Suleria, H.A.R. (2020). LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Marine Drugs, 18, 331. http://doi.org/10.3390/md18060331.
There are 49 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Hatice Banu Keskinkaya 0000-0002-6970-6939

Ebru Deveci 0000-0002-2597-9898

Erdoğan Güneş 0000-0003-2833-5710

Emine Şükran Okudan 0000-0001-5309-7238

Cengiz Akköz 0000-0003-3268-0189

Numan Emre Gümüş 0000-0001-8275-3871

Serdar Karakurt 0000-0002-4449-6103

Project Number 20111001
Publication Date June 30, 2022
Submission Date March 9, 2022
Acceptance Date May 30, 2022
Published in Issue Year 2022

Cite

APA Keskinkaya, H. B., Deveci, E., Güneş, E., Okudan, E. Ş., et al. (2022). Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of Marine Macroalgae Codium fragile (Suringar) Hariot. Commagene Journal of Biology, 6(1), 94-104. https://doi.org/10.31594/commagene.1084336
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.