Research Article
BibTex RIS Cite

Effects of Biochar and Cladophora glomerata on Wheat (Triticum aestivum L.) Growth and Rhizosphere Enzyme Activities

Year 2024, , 80 - 86, 31.12.2024
https://doi.org/10.31594/commagene.1527214

Abstract

The positive effects of biochar on both soil quality and plant growth and also on plant growth of macroalgae have been reported in studies. Studies on biochar and macroalgae interaction are quite limited. This study was carried out according to randomized plot design in greenhouse conditions to determine the effects of biochar and Cladophora glomerata applications and interaction on the growth of wheat (Triticum aestivum L.) and some enzyme activities in the rhizosphere. Biochar and C. glomerata interaction increased wheat root (90%) and shoot dry weight (84.2%), root length (43.1%) and plant height (84.2%) compared to control. Biochar application increased alkaline phosphatase activity by 66.3%, while C. glomerata increased β-glucosidase activity by 49%. The interaction of both applications increased catalase activity by 62.1% compared to control. These findings confirm the potential of biochar and C. glomerata to improve wheat production by inducing growth.

References

  • Abbas, A., Naveed, M., Azeem, M., Yaseen, M., Ullah, R., & Alamri, S. (2020). Efficiency of wheat straw biochar in combination with compost and biogas slurry for enhancing nutritional status and productivity of soil and plant. Plants, 9, 1516. https://doi.org/10.3390/plants9111516
  • Ahmed, D.A.E., Gheda, S.F., & Ismail, G.A. (2021). Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environmental Science and Pollution Research, 28, 12831–12846. https://doi.org/10.1007/s11356-020-11289-8
  • Ali A., Guo D., Arockiam Jeyasundar P.G.S., Li Y., Xiao R., Du J., Li R., & Zhang Z. (2019). Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicology and Environmental Safety, 184, 109635, https://doi.org/10.1016/j.ecoenv.2019.109635
  • Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10, 531. https://doi.org/10.3390/plants10030531
  • Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., & Merino, C. (2020). Meta-Analysis of Heavy Metal Effects on Soil Enzyme Activities. Science of the Total Environment, 737, 139744. https://doi.org/10.1016/j.scitotenv.2020.139744
  • Arnon, D. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24,1-15
  • Baroud, S., Tahrouch, S., El Mehrach, K., Sadki, I., Fahmi, F., & Hatimi, A. (2021). Effect of brown algae on germination, growth and biochemical composition of tomato leaves (Solanum lycopersicum). Journal of the Saudi Society of Agricultural Sciences, 20, 337–343. https://doi.org/10.1016/j.jssas.2021.03.005
  • Battacharyya, D., Babgohari, M.Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. http://doi.org/10.1016/j.scienta.2015.09.012
  • Beck, T.H. (1971). Die Messung Katalasen Aktivitaet Böden. Z. Pflanzenernaehai. Sodenk, 130, 68-81.
  • Chen H., Yang X., Wang H., Sarkar B., Shaheen S. M., & Gielen G. (2020). Animal Carcass- and Wood-Derived Biochars Improved Nutrient Bioavailability, Enzyme Activity, and Plant Growth in Metal-Phthalic Acid Ester Co-contaminated Soils: A Trial for Reclamation and Improvement of Degraded Soils. The Journal of Environmental Management, 261, 110246. http://doi.org/10.1016/j.jenvman.2020.110246
  • Chen, D., Zhiming, L., Yang, J., Zhou, W., Wu, Q., Shen, H., & Ao, J. (2023). Seaweed extract enhances drought resistance in sugarcane via modulating root configuration and soil physicochemical properties. Industrial Crops and Products, 194, 116321. https://doi.org/10.1016/j.indcrop.2023.116321
  • Danish, S. A. Ameer, T.I. Qureshi, U. Younis, H. Manzoor, A. Shakeel, M. & Ehsanullah, M. (2014). Influence of biochar on growth and photosynthetic attributes of Triticum aestivum L. under half and full irrigation. International Journal of Biosciences, 5(7), 101-108 https://doi.org/10.12692/ijb/5.7.101-108
  • Daunoras, J., Kacergius, A., & Gudiukaite, R. (2024). Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology, 13, 85. https://doi.org/10.3390/biology13020085
  • Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30, 401-422. http://doi.org/10.1051/agro/2009040
  • Dziergowska, K., Wełna, M., Szymczycha-Madeja, A., Chęcmanowski, J., & Michalak, I. (2021). Valorization of Cladophora glomerata Biomass and Obtained Bioproducts into Biostimulants of Plant Growth and as Sorbents (Biosorbents) of Metal Ions. Molecules, 26, 6917. https://doi.org/10.3390/molecules26226917
  • Espinosa-Anton, A.A., Zamora-Natera, J.F., Zarazua-Villasenor, P., Santacruz-Ruvalcaba, F., Sanchez-Hernandez, C.H., Alcantara, E.A., Torres-Moran, M., Velasco-Ramirez, A.P., & Hernandez-Herrera, R.M. (2023). Application of Seaweed Generates Changes in the Substrate and Stimulates the Growth of Tomato Plants. Plants, 12(7), 1520. https://doi.org/10.3390/plants12071520
  • Goncalves-Lopes, E.M., Reis, M.M., Frazo, L.A., Terra, L.E.M., Lopes, E.F., dos Santos, L.M., & Fernandes, L.A. (2021). Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane. Environmental Technology & Innovation, 21, 101270. https://doi.org/10.1016/j.eti.2020.101270
  • Hamouda, R.A., Hussein, M.H., El-Naggar, N.E.A., Karim-Eldeen, M.A., Alamer, K.H., Saleh, M.A., Sharaf, E.M., & El-Azeem, R.M.A. (2022). Promoting effect of soluble polysaccharides extracted from Ulva spp. on Zea mays L. growth. Molecules, 27, 1394. https://doi.org/10.3390/molecules27041394
  • Higo, M., Azuma, M., Kamiyoshihara, Y., Kanda, A., Tatewaki, Y., & Isobe, K. (2020). Impact of Phosphorus Fertilization on Tomato Growth and Arbuscular Mycorrhizal Fungal Communities. Microorganisms, 8, 178. https://doi.org/10.3390/microorganisms8020178
  • Hou, Z., Tang, Y., Li, C., Lim, K. J., & Wang, Z. (2020). The additive effect of biochar amendment and simulated nitrogen deposition stimulates the plant height, photosynthesis and accumulation of NPK in pecan (Carya illinoinensis) seedlings. AoB Plants, 12, plaa035. https://doi.org/10.1093/aobpla/plaa035
  • Hu, W., Zhang, Y., Rong, X., Zhou, X., Fei, J., Peng, J., Luo, G. (2024). Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar, 6, 3 https://doi.org/10.1007/s42773-023-00296-w
  • Illera-Vives, M., Labandeira, S.S., Fernández-Labrada, M., & López-Mosquera, M.E. (2020). Agricultural uses of seaweed. In Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications; Torres, M.D., Kraan, S., Dominguez, H., Eds.; Elsevier: Amsterdam, The Netherlands, pp. 591–612.
  • Jiang, Y., Wang, X., Zhao, Y., Zhang, C., Jin, Z., Shan, S., & Ping, L. (2021). Effects of Biochar Application on Enzyme Activities in Tea Garden Soi, 9, 728530. https://doi.org/10.3389/fbioe.2021.728530
  • Kasim, W.A., Saad-Allah, K.M., & Hamouda, M. (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). International Journal of Agriculture and Biology, 2016, 18, 653–660. https://doi.org/10.17957/IJAB/15.0152
  • Khan, W., Rayirath, U., Subramanian, A., Jithesh, M., Rayorath, P.D., Hodges, M., Critchley, A., Craigie, J., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386-399 https://doi.org/10.1007/s00344-009-9103-x
  • Khan M.N., Lan Z., Sial T.A., Zhao Y., Haseeb A., Jianguo Z., Zhang A., & Hill R.L. (2019). Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Arch. Archives of Agronomy and Soil Science, 65, 1704-1719, https://doi.org/10.1080/03650340.2019.1575510
  • Khan, S., Ismail, M., Ibrar, M., Haq, J.U., & Ali, Z. (2020). The Effect of Biochar on Soil Organic Matter, Total N in Soil and Plant, Nodules, Grain Yield and Biomass of Mung Bea. Soil and Environment, 39 (1), 87–94. https://doi.org/10.25252/se/2020/132088
  • Liao, N., Li Q., Zhang, W., Zhou, G., Ma, L., Min, W., Ye, J., & Hou,, Z. (2016). Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. The European Journal of Soil Biology, 72, 27-34, https://doi.org/10.1016/j.ejsobi.2015.12.008
  • Ma, C., Song, W., Yang, J., Ren, C., Du, H., Tang, T., Qin, S., Liu, Z., & Cui, H. (2022). The role and mechanism of commercial macroalgae for soil conditioner and nutrient uptake catalyzer. Plant Growth Regulation, 97, 455–476. https://doi.org/10.1007/s10725-022-00819-8
  • Mahmoud, S.H., Salama, D.M., El-Tanahy, A.M.M., & Abd El-Samad, E.H. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences, 64, 167–175. https://doi.org/10.1016/j.aoas.2019.11.002
  • Messyasz, B., Pikosz, M., Schroeder, G., Lęska, B., & Fabrowska, J. (2015).Cultivation and Identification of Marine Algae. In Marine Algae Extracts. Processes, Products, and Applications; Kim, S., Chojnacka, K., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 1, pp. 17–40.
  • Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: A macroalga of commercial interest. Journal of Applied Phycology, 33, 133–166. https://doi.org/10.1007/s10811-020-02211-3
  • Pathan, S.I., Zifcakova, L., Ceccherini, M.T., Pantani, O.L., Vetrovsky, T., & Baldrian, P. (2017). Seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biology Biochemistry, 105, 71-80. https://doi.org/10.1016/j.soilbio.2016.11.003
  • Paz-Ferreiro, J., Fu, S., Méndez, A., & Gasco, G. (2013). Interactive Effects of Biochar and the Earthworm Pontoscolex Corethrurus on Plant Productivity and Soil Enzyme Activities. Journal of Soils Sediments, 14, 483–494. https://doi.org/10.1007/s11368-013-0806-z
  • Pikosz, M., & Messyasz, B. (2016). Characteristics of Cladophora and coexisting filamentous algae in relation to environmental factors in freshwater ecosystems in Poland. Oceanological and Hydrobiological Studies, 45, 202–215. https://doi.org/10.1515/ohs-2016-0019
  • Popko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K., & Gorecki, H. (2018). Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules, 23, 470. https://doi.org/10.3390/molecules23020470
  • Salim, B.B.M. (2016). Influence of biochar and seaweed extract applications on growth, yield and mineral composition of wheat (Triticum aestivum L.) under sandy soil conditions. Annals of Agricultural Sciences, 61, 257-265 https://doi.org/10.1016/j.aoas.2016.06.001
  • Song X., Razavi B.S., Ludwig B., Zamanian K., Zang H., Kuzyakov Y., Dippold M.A., & Gunina A. (2020). Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Science of the Total Environment, 735, 139393, https://doi.org/10.1016/j.scitotenv.2020.139393
  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis. Part 2. Microbiological and biochemi - cal properties. Soil Science Society of America, Madison, pp 775–833
  • Tu C., Wei J., Guan F., Liu Y., Sun Y., & Luo Y. (20209. Biochar and Bacteria Inoculated Biochar Enhanced Cd and Cu Immobilization and Enzymatic Activity in a Polluted Soil. Environment International, 137, 105576. https://doi.org/10.1016/j.envint.2020.105576
  • Wang R., Fu W., Wang J., Zhu L., Wang L., & Wang J. (2019). Application of Rice Grain Husk Derived Biochar in Ameliorating Toxicity Impacts of Cu and Zn on Growth, Physiology and Enzymatic Functioning of Wheat Seedlings. Bull. The Bulletin of Environmental Contamination and Toxicology, 103 (4), 636–641. https://doi.org/10.1007/s00128-019-02705-y
  • Yin R., Deng H., Wang H.l., & Zhang B. (2014). Vegetation Type Affects Soil Enzyme Activities and Microbial Functional Diversity Following Re-vegetation of a Severely Eroded Red Soil in Sub-tropical China. Catena, 115, 96–103. https://doi.org/10.1016/j.catena.2013.11.015
  • Yıldız, M., & Özgen, M. (2004). The effect of media sucrose concentration on total phenolics content and adventitious shoot regeneration from sugar beet (Beta vulgaris L.) leaf and petiole explants. Plant Cell, Tissue and Organ Culture, 77,111-115.

Biyokömür ve Cladophora glomerata’nın Buğday (Triticum aestivum L.) Gelişimi ve Rizosfer Enzim Aktivitelerine Etkileri

Year 2024, , 80 - 86, 31.12.2024
https://doi.org/10.31594/commagene.1527214

Abstract

Biyokömürün hem toprak kalitesi hem de bitki gelişimine ayrıca makroalglerin bitki gelişimi üzerine olumlu etkileri yapılan çalışmalarda rapor edilmiştir. Biyokömür ve makroalg interaksiyonu ile ilgili çalışmalar ise oldukça sınırlıdır. Bu çalışma, biyokömür ve Cladophora glomerata uygulamaları ve interaksiyonunun; buğdayın (Triticum aestivum L.) gelişimi ve rizosferdeki bazı enzim aktiviteleri üzerindeki etkisini belirlemek için serada koşullarında tesadüf parselleri deneme desenine göre yürütülmüştür. Biyokömür ve C. glomerata interaksiyonu kontrolle karşılaştırıldığında buğdayın kök (%90) ve sürgün kuru ağırlığını (%84.2), kök uzunluğunu (%43.1) ve bitki boyunu (%84.2) kontrole göre artırmıştır. Biyokömür uygulaması alkalin fosfataz aktiviteyi %66.3 oranında arttırırken, C. glomerata β-glukosidaz altiviteyi %49 oranında artırmıştır. Her iki uygulamanın interaksiyonu katalaz aktiviteyi kontrolle karşılaştırıldığında %62.1 oranında artırmıştır. Bu bulgular, biyokömür ve C. glomerata’nın buğday gelişimini tetikleyerek üretimini iyileştirme potansiyelini doğrulamaktadır.

References

  • Abbas, A., Naveed, M., Azeem, M., Yaseen, M., Ullah, R., & Alamri, S. (2020). Efficiency of wheat straw biochar in combination with compost and biogas slurry for enhancing nutritional status and productivity of soil and plant. Plants, 9, 1516. https://doi.org/10.3390/plants9111516
  • Ahmed, D.A.E., Gheda, S.F., & Ismail, G.A. (2021). Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant. Environmental Science and Pollution Research, 28, 12831–12846. https://doi.org/10.1007/s11356-020-11289-8
  • Ali A., Guo D., Arockiam Jeyasundar P.G.S., Li Y., Xiao R., Du J., Li R., & Zhang Z. (2019). Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicology and Environmental Safety, 184, 109635, https://doi.org/10.1016/j.ecoenv.2019.109635
  • Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10, 531. https://doi.org/10.3390/plants10030531
  • Aponte, H., Meli, P., Butler, B., Paolini, J., Matus, F., & Merino, C. (2020). Meta-Analysis of Heavy Metal Effects on Soil Enzyme Activities. Science of the Total Environment, 737, 139744. https://doi.org/10.1016/j.scitotenv.2020.139744
  • Arnon, D. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24,1-15
  • Baroud, S., Tahrouch, S., El Mehrach, K., Sadki, I., Fahmi, F., & Hatimi, A. (2021). Effect of brown algae on germination, growth and biochemical composition of tomato leaves (Solanum lycopersicum). Journal of the Saudi Society of Agricultural Sciences, 20, 337–343. https://doi.org/10.1016/j.jssas.2021.03.005
  • Battacharyya, D., Babgohari, M.Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. http://doi.org/10.1016/j.scienta.2015.09.012
  • Beck, T.H. (1971). Die Messung Katalasen Aktivitaet Böden. Z. Pflanzenernaehai. Sodenk, 130, 68-81.
  • Chen H., Yang X., Wang H., Sarkar B., Shaheen S. M., & Gielen G. (2020). Animal Carcass- and Wood-Derived Biochars Improved Nutrient Bioavailability, Enzyme Activity, and Plant Growth in Metal-Phthalic Acid Ester Co-contaminated Soils: A Trial for Reclamation and Improvement of Degraded Soils. The Journal of Environmental Management, 261, 110246. http://doi.org/10.1016/j.jenvman.2020.110246
  • Chen, D., Zhiming, L., Yang, J., Zhou, W., Wu, Q., Shen, H., & Ao, J. (2023). Seaweed extract enhances drought resistance in sugarcane via modulating root configuration and soil physicochemical properties. Industrial Crops and Products, 194, 116321. https://doi.org/10.1016/j.indcrop.2023.116321
  • Danish, S. A. Ameer, T.I. Qureshi, U. Younis, H. Manzoor, A. Shakeel, M. & Ehsanullah, M. (2014). Influence of biochar on growth and photosynthetic attributes of Triticum aestivum L. under half and full irrigation. International Journal of Biosciences, 5(7), 101-108 https://doi.org/10.12692/ijb/5.7.101-108
  • Daunoras, J., Kacergius, A., & Gudiukaite, R. (2024). Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology, 13, 85. https://doi.org/10.3390/biology13020085
  • Diacono, M., & Montemurro, F. (2010). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30, 401-422. http://doi.org/10.1051/agro/2009040
  • Dziergowska, K., Wełna, M., Szymczycha-Madeja, A., Chęcmanowski, J., & Michalak, I. (2021). Valorization of Cladophora glomerata Biomass and Obtained Bioproducts into Biostimulants of Plant Growth and as Sorbents (Biosorbents) of Metal Ions. Molecules, 26, 6917. https://doi.org/10.3390/molecules26226917
  • Espinosa-Anton, A.A., Zamora-Natera, J.F., Zarazua-Villasenor, P., Santacruz-Ruvalcaba, F., Sanchez-Hernandez, C.H., Alcantara, E.A., Torres-Moran, M., Velasco-Ramirez, A.P., & Hernandez-Herrera, R.M. (2023). Application of Seaweed Generates Changes in the Substrate and Stimulates the Growth of Tomato Plants. Plants, 12(7), 1520. https://doi.org/10.3390/plants12071520
  • Goncalves-Lopes, E.M., Reis, M.M., Frazo, L.A., Terra, L.E.M., Lopes, E.F., dos Santos, L.M., & Fernandes, L.A. (2021). Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane. Environmental Technology & Innovation, 21, 101270. https://doi.org/10.1016/j.eti.2020.101270
  • Hamouda, R.A., Hussein, M.H., El-Naggar, N.E.A., Karim-Eldeen, M.A., Alamer, K.H., Saleh, M.A., Sharaf, E.M., & El-Azeem, R.M.A. (2022). Promoting effect of soluble polysaccharides extracted from Ulva spp. on Zea mays L. growth. Molecules, 27, 1394. https://doi.org/10.3390/molecules27041394
  • Higo, M., Azuma, M., Kamiyoshihara, Y., Kanda, A., Tatewaki, Y., & Isobe, K. (2020). Impact of Phosphorus Fertilization on Tomato Growth and Arbuscular Mycorrhizal Fungal Communities. Microorganisms, 8, 178. https://doi.org/10.3390/microorganisms8020178
  • Hou, Z., Tang, Y., Li, C., Lim, K. J., & Wang, Z. (2020). The additive effect of biochar amendment and simulated nitrogen deposition stimulates the plant height, photosynthesis and accumulation of NPK in pecan (Carya illinoinensis) seedlings. AoB Plants, 12, plaa035. https://doi.org/10.1093/aobpla/plaa035
  • Hu, W., Zhang, Y., Rong, X., Zhou, X., Fei, J., Peng, J., Luo, G. (2024). Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar, 6, 3 https://doi.org/10.1007/s42773-023-00296-w
  • Illera-Vives, M., Labandeira, S.S., Fernández-Labrada, M., & López-Mosquera, M.E. (2020). Agricultural uses of seaweed. In Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications; Torres, M.D., Kraan, S., Dominguez, H., Eds.; Elsevier: Amsterdam, The Netherlands, pp. 591–612.
  • Jiang, Y., Wang, X., Zhao, Y., Zhang, C., Jin, Z., Shan, S., & Ping, L. (2021). Effects of Biochar Application on Enzyme Activities in Tea Garden Soi, 9, 728530. https://doi.org/10.3389/fbioe.2021.728530
  • Kasim, W.A., Saad-Allah, K.M., & Hamouda, M. (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). International Journal of Agriculture and Biology, 2016, 18, 653–660. https://doi.org/10.17957/IJAB/15.0152
  • Khan, W., Rayirath, U., Subramanian, A., Jithesh, M., Rayorath, P.D., Hodges, M., Critchley, A., Craigie, J., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386-399 https://doi.org/10.1007/s00344-009-9103-x
  • Khan M.N., Lan Z., Sial T.A., Zhao Y., Haseeb A., Jianguo Z., Zhang A., & Hill R.L. (2019). Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Arch. Archives of Agronomy and Soil Science, 65, 1704-1719, https://doi.org/10.1080/03650340.2019.1575510
  • Khan, S., Ismail, M., Ibrar, M., Haq, J.U., & Ali, Z. (2020). The Effect of Biochar on Soil Organic Matter, Total N in Soil and Plant, Nodules, Grain Yield and Biomass of Mung Bea. Soil and Environment, 39 (1), 87–94. https://doi.org/10.25252/se/2020/132088
  • Liao, N., Li Q., Zhang, W., Zhou, G., Ma, L., Min, W., Ye, J., & Hou,, Z. (2016). Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. The European Journal of Soil Biology, 72, 27-34, https://doi.org/10.1016/j.ejsobi.2015.12.008
  • Ma, C., Song, W., Yang, J., Ren, C., Du, H., Tang, T., Qin, S., Liu, Z., & Cui, H. (2022). The role and mechanism of commercial macroalgae for soil conditioner and nutrient uptake catalyzer. Plant Growth Regulation, 97, 455–476. https://doi.org/10.1007/s10725-022-00819-8
  • Mahmoud, S.H., Salama, D.M., El-Tanahy, A.M.M., & Abd El-Samad, E.H. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals of Agricultural Sciences, 64, 167–175. https://doi.org/10.1016/j.aoas.2019.11.002
  • Messyasz, B., Pikosz, M., Schroeder, G., Lęska, B., & Fabrowska, J. (2015).Cultivation and Identification of Marine Algae. In Marine Algae Extracts. Processes, Products, and Applications; Kim, S., Chojnacka, K., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 1, pp. 17–40.
  • Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: A macroalga of commercial interest. Journal of Applied Phycology, 33, 133–166. https://doi.org/10.1007/s10811-020-02211-3
  • Pathan, S.I., Zifcakova, L., Ceccherini, M.T., Pantani, O.L., Vetrovsky, T., & Baldrian, P. (2017). Seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biology Biochemistry, 105, 71-80. https://doi.org/10.1016/j.soilbio.2016.11.003
  • Paz-Ferreiro, J., Fu, S., Méndez, A., & Gasco, G. (2013). Interactive Effects of Biochar and the Earthworm Pontoscolex Corethrurus on Plant Productivity and Soil Enzyme Activities. Journal of Soils Sediments, 14, 483–494. https://doi.org/10.1007/s11368-013-0806-z
  • Pikosz, M., & Messyasz, B. (2016). Characteristics of Cladophora and coexisting filamentous algae in relation to environmental factors in freshwater ecosystems in Poland. Oceanological and Hydrobiological Studies, 45, 202–215. https://doi.org/10.1515/ohs-2016-0019
  • Popko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K., & Gorecki, H. (2018). Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules, 23, 470. https://doi.org/10.3390/molecules23020470
  • Salim, B.B.M. (2016). Influence of biochar and seaweed extract applications on growth, yield and mineral composition of wheat (Triticum aestivum L.) under sandy soil conditions. Annals of Agricultural Sciences, 61, 257-265 https://doi.org/10.1016/j.aoas.2016.06.001
  • Song X., Razavi B.S., Ludwig B., Zamanian K., Zang H., Kuzyakov Y., Dippold M.A., & Gunina A. (2020). Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Science of the Total Environment, 735, 139393, https://doi.org/10.1016/j.scitotenv.2020.139393
  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis. Part 2. Microbiological and biochemi - cal properties. Soil Science Society of America, Madison, pp 775–833
  • Tu C., Wei J., Guan F., Liu Y., Sun Y., & Luo Y. (20209. Biochar and Bacteria Inoculated Biochar Enhanced Cd and Cu Immobilization and Enzymatic Activity in a Polluted Soil. Environment International, 137, 105576. https://doi.org/10.1016/j.envint.2020.105576
  • Wang R., Fu W., Wang J., Zhu L., Wang L., & Wang J. (2019). Application of Rice Grain Husk Derived Biochar in Ameliorating Toxicity Impacts of Cu and Zn on Growth, Physiology and Enzymatic Functioning of Wheat Seedlings. Bull. The Bulletin of Environmental Contamination and Toxicology, 103 (4), 636–641. https://doi.org/10.1007/s00128-019-02705-y
  • Yin R., Deng H., Wang H.l., & Zhang B. (2014). Vegetation Type Affects Soil Enzyme Activities and Microbial Functional Diversity Following Re-vegetation of a Severely Eroded Red Soil in Sub-tropical China. Catena, 115, 96–103. https://doi.org/10.1016/j.catena.2013.11.015
  • Yıldız, M., & Özgen, M. (2004). The effect of media sucrose concentration on total phenolics content and adventitious shoot regeneration from sugar beet (Beta vulgaris L.) leaf and petiole explants. Plant Cell, Tissue and Organ Culture, 77,111-115.
There are 43 citations in total.

Details

Primary Language English
Subjects Algology, Plant Physiology, Plant Developmental and Reproductive Biology
Journal Section Research Articles
Authors

Göksal Sezen 0000-0001-9054-851X

Çiğdem Küçük 0000-0001-5688-5440

Early Pub Date November 7, 2024
Publication Date December 31, 2024
Submission Date August 2, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2024

Cite

APA Sezen, G., & Küçük, Ç. (2024). Effects of Biochar and Cladophora glomerata on Wheat (Triticum aestivum L.) Growth and Rhizosphere Enzyme Activities. Commagene Journal of Biology, 8(2), 80-86. https://doi.org/10.31594/commagene.1527214
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.