Research Article
BibTex RIS Cite

Irak, Musul'daki Yetişkin Insectivor Yarasanın (Pipistrellus kuhlii) Göz Yapılarının Morfolojik ve Histolojik İncelemesi

Year 2025, Volume: 9 Issue: 2, 145 - 150, 18.12.2025
https://doi.org/10.31594/commagene.1661571

Abstract

Farklı organizmaların göz anatomisinin incelenmesi, evrimsel stratejileri ve adaptasyonları hakkında önemli bilgiler sunmaktadır. Bu çalışma, Irak’ın Musul bölgesinde yaygın olarak bulunan bir yarasa türü olan Pipistrellus kuhlii'nin göz yapısının incelenmesine odaklanmaktadır. Araştırmamız, bu yarasanın görsel sistemini çevresel nişine nasıl uyarladığını anlamaya katkı sağlamayı amaçlamaktadır. 5.5 - 6 gram ağırlığında 12 yetişkin yarasa canlı olarak yakalanmıştır. Yarasalara anestezi uygulanmış ve gözler yuvadan çıkarılarak %10 formaldehit içinde muhafaza edilmiştir, ardından histolojik analiz süreci gerçekleştirilmiştir. Bu çalışma, ilk olarak Pipistrellus kuhlii’nin gözünün, düşük ışık koşullarında etkili avlanmaya kesinlikle bağlı olan oldukça gelişmiş adaptasyonlara sahip olduğunu göstermiştir. Retina yapısı, katlanma olmadan, düşük ışık için yüksek yoğunlukta çubuk hücrelerine sahip olup, gece aktiviteleri sırasında av takibi için de özelleşmiştir. İkinci olarak, renkli görme ile ilgili fotoreseptör hücrelerinin (koniler) oldukça farklı bir düzeni ortaya konmuştur. Bu bulgular, yarasaların renkli görmelerinin çok sınırlı olduğu yönündeki genel fikirleri sorgulayacaktır. Şüphesiz, mevcut araştırma, uçan memelilerin karmaşık görsel ayarlamaları hakkında faydalı bilgiler sunabilir ve yarasa görmesi hakkındaki anlayışımızı artırabilir.

Ethical Statement

Hayvanların elle tutulması ve ötenazisini içeren tüm deneyler, üniversite hayvan bakımı komitesi ve çalışmada hayvanların kullanımı doğrultusunda onaylanmıştır.

Supporting Institution

Musul Üniversitesi, Irak

Thanks

Bu çalışmaya sağladığı destekten dolayı Musul Üniversitesi/Musul-Irak'a teşekkür ederiz.

References

  • Aboelnour, A., Noreldin, A.E., Massoud, D., & Abumandour, M.M. (2020). Retinal characterization in the eyes of two bats endemic in the Egyptian fauna, the Egyptian fruit bat (Rousettus aegyptiacus) and insectivorous bat (Pipistrellus kuhlii), using the light microscope and transmission electron microscope. Microscopy Research and Technique, 83(11), 1391-1400.
  • Antonio, E.A., Sá, F.B.D., Santos, K.R., Lima Junior, N.B., Silva, F.R., Aguiar Júnior, F.C., & Vieira, J.R. (2021). Comparative retinal histomorphometry and visual acuity of three bat species of the genus Artibeus (Phyllostomidae: Stenodermatinae). Pesquisa Veterinária Brasileira, 40, 933-945.
  • Baden, T., & Osorio, D. (2019). The retinal basis of vertebrate color vision. Annual review of vision science, 5(1), 177-200.
  • Benda, P., & Ševčík, M. (2020). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 16. Review of the distribution and taxonomy of bats in Egypt. Acta Societatis Zoologicae Bohemicae, 84, 115-279.
  • Bojarski, C., & Bernard, R. (1988). Comparison of the morphology of the megachiropteran and microchiropteran eye. African Zoology, 23(3), 155-160.
  • Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating fruit bats produce biosonar clicks with their wings. Current Biology, 24(24), 2962-2967.
  • Burgin, C.J., Colella, J.P., Kahn, P.L., & Upham, N.S. (2018). How many species of mammals are there? Journal of mammalogy, 99(1), 1-14.
  • Burton, R. (2006). A new look at the scaling of size in mammalian eyes. Journal of Zoology, 269(2), 225-232.
  • Burton, R. F. (2008). The scaling of eye size in adult birds: relationship to brain, head and body sizes. Vision Research, 48(22), 2345-2351.
  • Butz, E., Peichl, L., & Müller, B. (2015). Cone bipolar cells in the retina of the microbat Carollia perspicillata. Journal of Comparative Neurology, 523(6), 963-981.
  • Corral-López, A., Garate-Olaizola, M., Buechel, S. D., Kolm, N., & Kotrschal, A. (2017). On the role of body size, brain size, and eye size in visual acuity. Behavioral Ecology and Sociobiology, 71, 1-10.
  • Dong, E.M., & Allison, W.T. (2021). Vertebrate features revealed in the rudimentary eye of the Pacific hagfish (Eptatretus stoutii). Proceedings of the Royal Society B, 288(1942), 20202187.
  • El-Bakary, N.E., & Abumandour, M.M. (2017). Visual adaptations of the eye of the gilthead sea bream (Sparus aurata). Veterinary Research Communications, 41(4), 257-262.
  • Fenton, M. (2003). Science and the conservation of bats: where to next? Wildlife Society Bulletin, 31(1), 6-6.
  • Fujun, X., Kailiang, H., Tengteng, Z., Paul, R., Xuzhong, W., & Yi, S. (2012). Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia (Curitiba), 29, 109-114.
  • Gholami, S., & Ghasemi, F. (2021). The Study of Retinal Structure in Frugivorous Bat (Rousettus Aegyptiacus) by Light and Electron Microscope. Egyptian Journal of Histology, 44(4), 941-949.
  • Gorresen, P.M., Cryan, P.M., Dalton, D.C., Wolf, S., & Bonaccorso, F.J. (2015). Ultraviolet vision may be widespread in bats. Acta Chiropterologica, 17(1), 193-198.
  • Graydon, M., Giorgi, P., & Pettigrew, J. (1987). Vision in flying foxes (Chiroptera: Pteropodidae). Australian Mammalogy, 10(2), 101-106.
  • Greiter, W., & Firzlaff, U. (2017). Representation of three-dimensional space in the auditory cortex of the echolocating bat P. discolor. PLoS One, 12(8), e0182461.
  • Gutierrez, E.D.A., Castiglione, G.M., Morrow, J.M., Schott, R.K., Loureiro, L.O., Lim, B.K., & Chang, B.S. (2018). Functional shifts in bat dim-light visual pigment are associated with differing echolocation abilities and reveal molecular adaptation to photic-limited environments. Molecular Biology and Evolution, 35(10), 2422-2434.
  • Hammadi, S., Tzoumas, N., Ferrara, M., Meschede, I.P., Lo, K., Harris, C., Lako, M., & Steel, D.H. (2023). Bruch’s membrane: a key consideration with complement-based therapies for age-related macular degeneration. Journal of Clinical Medicine, 12(8), 2870.
  • Howland, H.C., Merola, S., & Basarab, J.R. (2004). The allometry and scaling of the size of vertebrate eyes. Vision Research, 44(17), 2043-2065.
  • Jeong, M.J., Kim, H.G., & Jeon, C.J. (2018). The organization of melanopsin-immunoreactive cells in microbat retina. PLoS One, 13(1), e0190435.
  • Jones, G., Jacobs, D.S., Kunz, T.H., Willig, M.R., & Racey, P.A. (2009). Carpe noctem: the importance of bats as bioindicators. Endangered species research, 8(1-2), 93-115.
  • Kunz, T.H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T.H. (2011). Ecosystem services provided by bats. Annals of the New York academy of sciences, 1223(1), 1-38.
  • Müller, B., Butz, E., Peichl, L., & Haverkamp, S. (2013). The rod pathway of the microbat retina has bistratified rod bipolar cells and tristratified AII amacrine cells. Journal of Neuroscience, 33(3), 1014-1023.
  • Müller, B., Glösmann, M., Peichl, L., Knop, G.C., Hagemann, C., & Ammermüller, J. (2009). Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One, 4(7), e6390.
  • Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A., & O'Brien, S.J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409(6820), 614-618.
  • Pedler, C., & Tilley, R. (1969). The retina of a fruit bat (Pteropus giganteus Bru¨ nnich). Vision Research, 9(8), 909-922.
  • Peter-Ajuzie, I., Nwaogu, I., Majesty-Alukagberie, L., Ajaebili, A., Farrag, F., Kassab, M., Morsy, K., & Abumandour, M. (2022). Ocular morphology of the fruit bat, Eidolon helvum, and the optical role of the choroidal papillae in the megachiropteran eye: a novel insight. Folia morphologica, 81(3), 715-722.
  • Rodríguez-Herrera, B., Rodríguez, P., Watson, W., McCracken, G.F., Medellín, R.A., & Galván, I. (2019). Sexual dichromatism and condition-dependence in the skin of a bat. Journal of mammalogy, 100(2), 299-307.
  • Schwab, I., & Pettigrew, J. (2005). A choroidal sleight of hand. British Journal of Ophthalmology, 89(11), 1398-1398.
  • Soliman, K.M., & Emam, W.W. (2022). Bats and Ecosystem Management.
  • Suthers, R.A. (1970). A comment on the role of choroidal papillae in the fruit bat retina. Vision Research, 10(9), 921-922.
  • Teeling, E.C. (2009). Hear, hear: the convergent evolution of echolocation in bats? Trends in Ecology & Evolution, 24(7), 351-354.
  • Thomas, R.J., Székely, T., Powell, R., & Cuthill, I. (2006). Eye size, foraging methods and the timing of foraging in shorebirds. Functional Ecology, 157-165.
  • Warnecke, M., Macías, S., Falk, B., & Moss, C.F. (2018). Echo interval and not echo intensity drives bat flight behavior in structured corridors. Journal of Experimental Biology, 221(24), jeb191155.
  • Wilson, D., Mittermeier, R., Hardback, E., & is preceded by Volume, I. (2015). Handbook of mammals of the world: 5. Monotremes and Marsupials. In: CSIRO Publishing.
  • Zhao, H. (2020). COVID-19 drives new threat to bats in China. Science, 367(6485), 1436-1436.

Morphological and Histological Investigation of the Ocular Structures in the Adult Insectivorous Bat (Pipistrellus kuhlii) in Nineveh, Iraq

Year 2025, Volume: 9 Issue: 2, 145 - 150, 18.12.2025
https://doi.org/10.31594/commagene.1661571

Abstract

Studying the anatomy of the eye in different organisms offers considerable insights into their evolutionary strategies and adaptations. The present work focuses on the examination of the ocular structure in Pipistrellus kuhlii, a common species of bat found in Nineveh, Iraq. Our research aimed to contribute to enhancing the understanding of how this bat has altered its visual system in response to its environmental niche. Twelve adult bats weighing 5.5 - 6g were captured alive. Bats were anesthetized, and eyeballs were enucleated from the orbit, maintained in 10 % formaldehyde, and then the histological analysis process was performed. The present study first indicated that the Pipistrellus kuhlii eye has quite elaborate adaptations, certainly connected with efficient foraging in low light conditions. The retinal structure is specific, with no folding, but features a high density of rod cells for dim light and tracking prey during nocturnal activities. Second, a quite different layout of photoreceptor cells (cones) concerning color vision. These findings would challenge the general idea that bats have very limited color vision. The current research may offer useful information on the complex visual adjustments of flying mammals and increase our understanding of bats' vision.

Ethical Statement

All experiments involving handling and euthanasia of animal were approved according to the university committee of animal care and the use of animals in study.

Supporting Institution

University of Mosul/ Mosul-Iraq

Thanks

We would like to thank the University of Mosul/ Mosul-Iraq for providing support to this study.

References

  • Aboelnour, A., Noreldin, A.E., Massoud, D., & Abumandour, M.M. (2020). Retinal characterization in the eyes of two bats endemic in the Egyptian fauna, the Egyptian fruit bat (Rousettus aegyptiacus) and insectivorous bat (Pipistrellus kuhlii), using the light microscope and transmission electron microscope. Microscopy Research and Technique, 83(11), 1391-1400.
  • Antonio, E.A., Sá, F.B.D., Santos, K.R., Lima Junior, N.B., Silva, F.R., Aguiar Júnior, F.C., & Vieira, J.R. (2021). Comparative retinal histomorphometry and visual acuity of three bat species of the genus Artibeus (Phyllostomidae: Stenodermatinae). Pesquisa Veterinária Brasileira, 40, 933-945.
  • Baden, T., & Osorio, D. (2019). The retinal basis of vertebrate color vision. Annual review of vision science, 5(1), 177-200.
  • Benda, P., & Ševčík, M. (2020). Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 16. Review of the distribution and taxonomy of bats in Egypt. Acta Societatis Zoologicae Bohemicae, 84, 115-279.
  • Bojarski, C., & Bernard, R. (1988). Comparison of the morphology of the megachiropteran and microchiropteran eye. African Zoology, 23(3), 155-160.
  • Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating fruit bats produce biosonar clicks with their wings. Current Biology, 24(24), 2962-2967.
  • Burgin, C.J., Colella, J.P., Kahn, P.L., & Upham, N.S. (2018). How many species of mammals are there? Journal of mammalogy, 99(1), 1-14.
  • Burton, R. (2006). A new look at the scaling of size in mammalian eyes. Journal of Zoology, 269(2), 225-232.
  • Burton, R. F. (2008). The scaling of eye size in adult birds: relationship to brain, head and body sizes. Vision Research, 48(22), 2345-2351.
  • Butz, E., Peichl, L., & Müller, B. (2015). Cone bipolar cells in the retina of the microbat Carollia perspicillata. Journal of Comparative Neurology, 523(6), 963-981.
  • Corral-López, A., Garate-Olaizola, M., Buechel, S. D., Kolm, N., & Kotrschal, A. (2017). On the role of body size, brain size, and eye size in visual acuity. Behavioral Ecology and Sociobiology, 71, 1-10.
  • Dong, E.M., & Allison, W.T. (2021). Vertebrate features revealed in the rudimentary eye of the Pacific hagfish (Eptatretus stoutii). Proceedings of the Royal Society B, 288(1942), 20202187.
  • El-Bakary, N.E., & Abumandour, M.M. (2017). Visual adaptations of the eye of the gilthead sea bream (Sparus aurata). Veterinary Research Communications, 41(4), 257-262.
  • Fenton, M. (2003). Science and the conservation of bats: where to next? Wildlife Society Bulletin, 31(1), 6-6.
  • Fujun, X., Kailiang, H., Tengteng, Z., Paul, R., Xuzhong, W., & Yi, S. (2012). Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia (Curitiba), 29, 109-114.
  • Gholami, S., & Ghasemi, F. (2021). The Study of Retinal Structure in Frugivorous Bat (Rousettus Aegyptiacus) by Light and Electron Microscope. Egyptian Journal of Histology, 44(4), 941-949.
  • Gorresen, P.M., Cryan, P.M., Dalton, D.C., Wolf, S., & Bonaccorso, F.J. (2015). Ultraviolet vision may be widespread in bats. Acta Chiropterologica, 17(1), 193-198.
  • Graydon, M., Giorgi, P., & Pettigrew, J. (1987). Vision in flying foxes (Chiroptera: Pteropodidae). Australian Mammalogy, 10(2), 101-106.
  • Greiter, W., & Firzlaff, U. (2017). Representation of three-dimensional space in the auditory cortex of the echolocating bat P. discolor. PLoS One, 12(8), e0182461.
  • Gutierrez, E.D.A., Castiglione, G.M., Morrow, J.M., Schott, R.K., Loureiro, L.O., Lim, B.K., & Chang, B.S. (2018). Functional shifts in bat dim-light visual pigment are associated with differing echolocation abilities and reveal molecular adaptation to photic-limited environments. Molecular Biology and Evolution, 35(10), 2422-2434.
  • Hammadi, S., Tzoumas, N., Ferrara, M., Meschede, I.P., Lo, K., Harris, C., Lako, M., & Steel, D.H. (2023). Bruch’s membrane: a key consideration with complement-based therapies for age-related macular degeneration. Journal of Clinical Medicine, 12(8), 2870.
  • Howland, H.C., Merola, S., & Basarab, J.R. (2004). The allometry and scaling of the size of vertebrate eyes. Vision Research, 44(17), 2043-2065.
  • Jeong, M.J., Kim, H.G., & Jeon, C.J. (2018). The organization of melanopsin-immunoreactive cells in microbat retina. PLoS One, 13(1), e0190435.
  • Jones, G., Jacobs, D.S., Kunz, T.H., Willig, M.R., & Racey, P.A. (2009). Carpe noctem: the importance of bats as bioindicators. Endangered species research, 8(1-2), 93-115.
  • Kunz, T.H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T.H. (2011). Ecosystem services provided by bats. Annals of the New York academy of sciences, 1223(1), 1-38.
  • Müller, B., Butz, E., Peichl, L., & Haverkamp, S. (2013). The rod pathway of the microbat retina has bistratified rod bipolar cells and tristratified AII amacrine cells. Journal of Neuroscience, 33(3), 1014-1023.
  • Müller, B., Glösmann, M., Peichl, L., Knop, G.C., Hagemann, C., & Ammermüller, J. (2009). Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One, 4(7), e6390.
  • Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A., & O'Brien, S.J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409(6820), 614-618.
  • Pedler, C., & Tilley, R. (1969). The retina of a fruit bat (Pteropus giganteus Bru¨ nnich). Vision Research, 9(8), 909-922.
  • Peter-Ajuzie, I., Nwaogu, I., Majesty-Alukagberie, L., Ajaebili, A., Farrag, F., Kassab, M., Morsy, K., & Abumandour, M. (2022). Ocular morphology of the fruit bat, Eidolon helvum, and the optical role of the choroidal papillae in the megachiropteran eye: a novel insight. Folia morphologica, 81(3), 715-722.
  • Rodríguez-Herrera, B., Rodríguez, P., Watson, W., McCracken, G.F., Medellín, R.A., & Galván, I. (2019). Sexual dichromatism and condition-dependence in the skin of a bat. Journal of mammalogy, 100(2), 299-307.
  • Schwab, I., & Pettigrew, J. (2005). A choroidal sleight of hand. British Journal of Ophthalmology, 89(11), 1398-1398.
  • Soliman, K.M., & Emam, W.W. (2022). Bats and Ecosystem Management.
  • Suthers, R.A. (1970). A comment on the role of choroidal papillae in the fruit bat retina. Vision Research, 10(9), 921-922.
  • Teeling, E.C. (2009). Hear, hear: the convergent evolution of echolocation in bats? Trends in Ecology & Evolution, 24(7), 351-354.
  • Thomas, R.J., Székely, T., Powell, R., & Cuthill, I. (2006). Eye size, foraging methods and the timing of foraging in shorebirds. Functional Ecology, 157-165.
  • Warnecke, M., Macías, S., Falk, B., & Moss, C.F. (2018). Echo interval and not echo intensity drives bat flight behavior in structured corridors. Journal of Experimental Biology, 221(24), jeb191155.
  • Wilson, D., Mittermeier, R., Hardback, E., & is preceded by Volume, I. (2015). Handbook of mammals of the world: 5. Monotremes and Marsupials. In: CSIRO Publishing.
  • Zhao, H. (2020). COVID-19 drives new threat to bats in China. Science, 367(6485), 1436-1436.
There are 39 citations in total.

Details

Primary Language English
Subjects Behavioural Ecology, Animal Behaviour
Journal Section Research Article
Authors

Rabeea Hazim Mohammed 0000-0002-7757-8068

Shireen Yaseen Qasim 0000-0003-4373-3653

Ekhlass Khaleefah Hamid 0000-0001-8108-205X

Submission Date March 20, 2025
Acceptance Date July 19, 2025
Early Pub Date August 6, 2025
Publication Date December 18, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Mohammed, R. H., Qasim, S. Y., & Hamid, E. K. (2025). Morphological and Histological Investigation of the Ocular Structures in the Adult Insectivorous Bat (Pipistrellus kuhlii) in Nineveh, Iraq. Commagene Journal of Biology, 9(2), 145-150. https://doi.org/10.31594/commagene.1661571