Research Article
BibTex RIS Cite

Chemotherapeutic Drug Delivery from 3D-Printed Biodegradable Polymer for Breast Cancer Treatment

Year 2025, Volume: 9 Issue: 1, 103 - 111, 30.06.2025
https://doi.org/10.31594/commagene.1667137

Abstract

The controlled delivery of chemotherapeutic agents is critical for enhancing therapeutic efficiency and minimizing side effects in cancer treatment. This study investigates the drug release, thermal stability, and mechanical performance of polylactic acid (PLA) resin doped with boric acid (H₃BO₃) and 5-fluorouracil (5-FU), fabricated through digital light processing (DLP) 3D printing technology. Samples with various concentrations of 5-FU (0-30 wt.%) and 1 wt.% boric acid were prepared and characterized structurally, mechanically, thermally, and biologically. Incorporation of 1% H₃BO₃ improved compressive strength significantly by approximately 13%, reaching 55.04 MPa compared to 48.86 MPa in pure PLA, and enhanced elongation at break from 5.75% to 7.24%. Thermally, boric acid slightly increased the glass transition temperature from 58°C to 61°C and melting temperature from 179°C to 184°C, indicating improved polymer stability. Swelling behavior peaked around day 9 with up to 50% water uptake for some formulations. Moreover, drug release profiles exhibited sustained release over 15 days, reaching a maximum release amount of 4.24% on day 9 at low drug loadings. Cytotoxicity tests against MCF-7 breast cancer cells demonstrated significant reductions in viability, notably achieving 33.39% after 15 days at the highest 5-FU concentration (30%). These findings suggest that boric acid and 5-FU-doped PLA composites produced via 3D printing offer promising mechanical and controlled-release drug delivery characteristics suitable for developing advanced biomedical applications, particularly in targeted cancer therapy.

Ethical Statement

There are no human or animal subjects in this article

Supporting Institution

No financial support was used for this article.

References

  • Ailincai, D., Gavril, G., & Marin, L. (2020). Polyvinyl alcohol boric acid – A promising tool for the development of sustained release drug delivery systems. Materials Science and Engineering: C, 107, 110316. https://doi.org/10.1016/j.msec.2019.110316
  • Aktas, B., Yalcin, S., Dogru, K., Uzunoglu, Z., & Yilmaz, D. (2019). Structural and radiation shielding properties of chromium oxide doped borosilicate glass. Radiation Physics and Chemistry, 156, 144-149. https://doi.org/10.1016/j.radphyschem.2018.11.012
  • Aktas, B., Das, R., Acikgoz, A., Demircan, G., Yalcin, S., Aktas, H.G., & Balak, M.V. (2024). DLP 3D printing of TiO2-doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation. Materials Today Communications, 38, 107872. https://doi.org/10.1016/j.mtcomm.2023.107872
  • Aliasgharlou, N., Sana, F.A., Khoshbakht, S., Zolfaghari, P., & Charkhian, H. (2020). Fabrication and characterization of boric acid-crosslinked ethyl cellulose and polyvinyl alcohol films as potential drug release systems for topical drug delivery. Turkish Journal of Chemistry, 44(6), 1723-1732. https://doi.org/10.3906/kim-2008-23
  • Alkabbanie, R., Aktas, B., Demircan, G., & Yalcin, S. (2024). Short carbon fiber-reinforced PLA composites: influence of 3D-printing parameters on the mechanical and structural properties. Iranian Polymer Journal, 33(8), 1065-1074. https://doi.org/10.1007/s13726-024-01315-8
  • Avci, A., Akdogan Eker, A., Bodur, M.S., & Küçükyildirim, B.O. (2024). The effects of various boron compounds on the thermal, microstructural and mechanical properties of PLA biocomposites. Thermochimica Acta, 731, 179656. https://doi.org/10.1016/j.tca.2023.179656
  • Azimi, S., Esmaeil Lashgarian, H., Ghorbanzadeh, V., Moradipour, A., Pirzeh, L., & Dariushnejad, H. (2022). 5-FU and the dietary flavonoid carvacrol: a synergistic combination that induces apoptosis in MCF-7 breast cancer cells. Medical Oncology, 39(12), 253. https://doi.org/10.1007/s12032-022-01863-0
  • Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., & Bikiaris, D.N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11), 1822. https://doi.org/10.3390/polym13111822
  • Byun, H., Hong, B., Nam, S.Y., Jung, S.Y., Rhim, J.W., Lee, S.B., & Moon, G.Y. (2008). Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromolecular Research, 16, 189-193. https://doi.org/10.1007/BF03218851.
  • Carotenuto, P., Pecoraro, A., Brignola, C., Barbato, A., Franco, B., Longobardi, G., ... & Russo, A. (2023). Combining β-Carotene with 5-FU via Polymeric Nanoparticles as a Novel Therapeutic Strategy to Overcome uL3-Mediated Chemoresistance in p53-Deleted Colorectal Cancer Cells. Molecular Pharmaceutics, 20(5), 2326-2340.
  • Chavoshi, S., Rabiee, M., Rafizadeh, M., Rabiee, N., Shamsabadi, A. S., Bagherzadeh, M., ... & Tayebi, L. (2019). Mathematical modeling of drug release from biodegradable polymeric microneedles. Bio-Design and Manufacturing, 2, 96-107. https://doi.org/10.1007/s42242-019-00041-y
  • Chieng, B.W., Azowa, I.N., Yunus, W.M.Z.W., & Hussein, M.Z. (2014). Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites. Advanced materials research, 1024, 136-139.
  • Chu, L., Jiang, G., Hu, X-L., James, T.D., He, X-P., Yaping Li, Y., & Tang, T. (2018). Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization. Journal of Materials Chemistry B, 6, 1658-1667. https://doi.org/10.1039/C7TB03353B
  • Croitoru, A., Karaçelebi, Y., Saatcioglu, E., Altan, E., Ulag, S., Aydoğan, H., … & Ficai, A. (2021). Electrically triggered drug delivery from novel electrospun poly(lactic acid)/graphene oxide/quercetin fibrous scaffolds for wound dressing applications. Pharmaceutics, 13(7), 957. https://doi.org/10.3390/pharmaceutics13070957
  • Dash, T.K., & Konkimalla, V.B. (2012). Polymeric modification and its implication in drug delivery: Poly-ε-caprolactone (PCL) as a model polymer. Molecular Pharmaceutics, 9(9), 2365-2379.
  • Demircan, G., Kisa, M., Özen, M., Açikgöz, A., Aktaş, B., & Ali Kurt, M. (2020). A bio-based epoxy resin from rosin powder with improved mechanical performance. Emerging Materials Research, 9(4), 1076-1081. https://doi.org/10.1680/jemmr.20.00001
  • Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 601626. https://doi.org/10.3389/fphar.2021.601626
  • Gumushan Aktas, H., & Akgun, T. (2018). Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomedicine & Pharmacotherapy, 106, 770-775. https://doi.org/10.1016/j.biopha.2018.07.008
  • Gumushan‑Aktas, H., & Altun, S. (2016). Effects of Hedera helix L. extracts on rat prostate cancer cell proliferation and motility. Oncology Letters, 12, 2985-2991. https://doi.org/10.3892/ol.2016.4941
  • Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2021). Drug release study of the chitosan-based nanoparticles. Heliyon, 8(1), e08674. https://doi.org/10.1016/j.heliyon.2021.e08674
  • Hu, J., Li, A., Guo, Y., Ma, T., & Feng, S. (2023). The relationship between tumor metabolism and 5-fluorouracil resistance. Biochemical Pharmacology, 218, 115902. https://doi.org/10.1016/j.bcp.2023.115902
  • Jubeen, F., Ijaz, S., Jabeen, I., Aftab, U., Mehdi, W., Altaf, A., Alissa, S.A., Al-Ghulikah, H.A., Ezzine, S., Bejaoui, I., & Iqbal, M. (2022). Anticancer potential of novel 5-Fluorouracil co-crystals against MCF7 breast and SW480 colon cancer cell lines along with docking studies. Arabian Journal of Chemistry, 15(12), 104299. https://doi.org/10.1016/j.arabjc.2022.104299
  • Kangallı, E., & Bayraktar, E. (2022). Preparation and characterization of poly(lactic acid)/boron oxide nanocomposites: Thermal, mechanical, crystallization, and flammability properties. Journal of Applied Polymer Science, 139(28), e52521. https://doi.org/10.1002/app.52521
  • Karavelidis, V., & Bikiaris, D. (2012). New biocompatible aliphatic polyesters as thermosensitive drug nanocarriers. Application in Targeting Release Pharmaceutical Systems for Local Cancer Treatment. Journal of Nanomedicine Nanotechnology, 3(134), 2. https://doi.org/10.4172/2157-7439.1000134
  • Khaliq, H., Juming, Z. & Ke-Mei, P. (2018). The Physiological Role of Boron on Health. Biological Trace Element Research, 186, 31–51. https://doi.org/10.1007/s12011-018-1284-3
  • Kumar, S., Singh, S., Senapati, S., Singh, A.P., Ray, B., & Maiti, P. (2017). Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts. International Journal of Biological Macromolecules, 104, 487-497. https://doi.org/10.1016/j.ijbiomac.2017.06.033
  • Lasprilla, A.J., Martinez, G.A., Lunelli, B.H., Jardini, AL., & Filho, R. M. (2011). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. https://doi.org/10.1016/j.biotechadv.2011.06.019
  • Lee, J.H., & Yeo, Y. (2015). Controlled drug release from pharmaceutical nanocarriers. Chemical Engineering Science, 125, 75-84. https://doi.org/10.1016/j.ces.2014.08.046
  • Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual review of chemical and biomolecular engineering, 1(1), 149-173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
  • Majola, A., Vainionpää, S., Vihtonen, K., Mero, M., Vasenius, J., Törmälä, P., & Rokkanen, P. (1991). Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clinical Orthopaedics and Related Research (1976-2007), 268, 260-269.
  • Makadia, H.K., & Siegel, S.J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377-1397. https://doi.org/10.3390/polym3031377
  • Mamidi, N., Gonzalez-Ortiz, A., Lopez Romo, I., Barrera, E.V. (2019). Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics, 11(12), 621. https://doi.org/10.3390/pharmaceutics11120621
  • Middleton, J.C., & Tipton, A.J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0
  • Mngadi, S., Singh, M., & Mokhosi, S. (2021). PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells. Journal of Polymer Engineering, 41(7), 597-606.
  • Musumeci, T., Ventura, C., Giannone, I., Ruozi, B., Montenegro, L., Pignatello, R., & Puglisi, G. (2006). PLA/PLGA nanoparticles for sustained release of docetaxel. International Journal of Pharmaceutics, 325(1-2), 172-179. https://doi.org/10.1016/j.ijpharm.2006.06.023
  • Nofar, M., & Park, C.B. (2014). Poly(lactic acid) foaming. Progress in Polymer Science, 39(10), 1721–1741.
  • Olukman, M., Şanlı, O., & Solak, E.K. (2012). Release of anticancer drug 5-Fluorouracil from different ionically crosslinked alginate beads. Journal of Biomaterials and Nanobiotechnology, 3(4), 469-479.
  • Öcal, H., Arıca-Yegin, B., Vural, I., Goracinova, K., & Çalış, S. (2014). 5-Fluorouracil-loaded PLA/PLGA PEG–PPG–PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Development and Industrial Pharmacy, 40(4), 560-567. https://doi.org/10.3109/03639045.2013.775581
  • Pirkani, Z., Kamalinejad, F., Zare, Y., Abdollahi Boraei, S.B. (2024). Advancing Breast Cancer Treatment: The Role of PLA-based Scaffolds in Tumor Microenvironment and Drug Delivery. Multidisciplinary Cancer Investigation, 8(1), 1-14. https://doi.org/10.61186/mci.8.1.2
  • Proikakis, C., Tarantili, P., & Andreopoulos, A. (2006). The role of polymer/drug interactions on the sustained release from poly(dl-lactic acid) tablets. European Polymer Journal, 42(12), 3269-3276. https://doi.org/10.1016/j.eurpolymj.2006.08.023
  • Rani, K.V., Chandwani, N., Kikani, P., Nema, S.K., Sarma, A.K., & Sarma, B. (2018). Optimization and surface modification of silk fabric using DBD air plasma for improving wicking properties. The Journal of the Textile Institute, 109(3), 368-375.
  • Rasal, R.M., Janorkar, A.V., & Hirt, D.E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338–356.
  • Rasul, S.Y., Aktas, B., Yilmaz, D., Pathman, A.F., Yalcin, S., & Acikgoz, A. (2025). Impact of HfO2 on the structural, thermal, gamma, and neutron shielding properties of boro-tellurite glasses. Inorganic Chemistry Communications, 113993. https://doi.org/10.1016/j.inoche.2025.113993
  • Robert, P., Mauduit, J., Frank, R.M., & Vert, M. (1993). Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration. Biomaterials, 14(5), 353–358. https://doi:10.1016/0142-9612(93)90054-6
  • Samy, M., Abdallah, H.M., Awad, H.M., & Ayoub, M.M. (2022). In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles. Polymer Bulletin, 1-27. https://doi.org/10.1007/s00289-021-03804-9
  • Scorei, R.I., & Popa, R., Jr (2010). Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anti-cancer agents in medicinal chemistry, 10(4), 346–351. https://doi.org/10.2174/187152010791162289
  • Singh, R., & Lillard, J.W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004
  • Tawiah, B., Yu, B., Cheung, W.Y., Chan, S.Y., Yang, W., & Fei, B. (2018). Synthesis and application of synergistic azo-boron-BPA / polydopamine as efficient flame retardant for poly(lactic acid). Polymer Degradation and Stability, 152, 64-74. https://doi.org/10.1016/j.polymdegradstab.2018.03.018
  • Vedelago, J., Mattea, F., Triviño, S., Montesinos, M.D.M., Keil, W., Valente, M., & Romero, M. (2021). Smart material based on boron crosslinked polymers with potential applications in cancer radiation therapy. Scientific reports, 11(1), 12269. https://doi.org/10.1038/s41598-021-91413-x
  • Vlachopoulos, A., Karlioti, G., Balla, E., Daniilidis, V., Kalamas, T., Stefanidou, M., … & Bikiaris, D.N. (2022). Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics, 14(2), 359. https://doi.org/10.3390/pharmaceutics14020359
  • Wang, X., Liu, J., Zhang, Y., Kristiansen, P.M., Islam, A., Gilchrist, M., & Zhang, N. (2023). Advances in precision microfabrication through digital light processing: system development, material and applications. Virtual and Physical Prototyping, 18(1). https://doi.org/10.1080/17452759.2023.2248101
  • Wu, Z., Xia, F. & Lin, R. (2024). Global burden of cancer and associated risk factors in 204 countries and territories, 1980–2021: a systematic analysis for the GBD 2021. Journal of Hematology and Oncology, 17, 119. https://doi.org/10.1186/s13045-024-01640-8
  • Yuan, X., Zhu, W., Yang, Z., He, N., Chen, F., Han, X., & Zhou, K. (2024). Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. Advanced Materials, 36(34), 2403641. https://doi.org/10.1002/adma.202403641
  • Yun, Q., Wang, S.S., Xu, S., Yang, J.P., Fan, J., Yang, L.L., Chen, Y., Fu, S.Z., & Wu, J.B. (2017). Use of 5-Fluorouracil Loaded Micelles and Cisplatin in Thermosensitive Chitosan Hydrogel as an Efficient Therapy against Colorectal Peritoneal Carcinomatosis. Macromolecular Bioscience, 17(4), 1600262. https://doi.org/10.1002/mabi.201600262

Meme Kanseri Tedavisi için 3D Baskılı Biyobozunur Polimerden Kemoterapötik İlaç Salınımı

Year 2025, Volume: 9 Issue: 1, 103 - 111, 30.06.2025
https://doi.org/10.31594/commagene.1667137

Abstract

Kemoterapötik ajanların kontrollü dağıtımı, kanser tedavisinde terapötik etkinliği artırmak ve yan etkileri en aza indirmek için kritik öneme sahiptir. Bu çalışma, dijital ışık işleme (DLP) 3D baskı teknolojisiyle üretilen borik asit (H₃BO₃) ve 5-florourasil (5-FU) ile katkılanmış polilaktik asit (PLA) reçinesinin ilaç salımını, termal kararlılığını ve mekanik performansını araştırmaktadır. Çeşitli 5-FU (%0-%30 ağırlıkça) ve %1 ağırlıkça borik asit konsantrasyonlarına sahip numuneler hazırlandı ve yapısal, mekanik, termal ve biyolojik olarak karakterize edildi. %1 H₃BO₃ eklenmesi, basınç dayanımını yaklaşık %13 oranında önemli ölçüde iyileştirerek saf PLA'daki 48,86 MPa'ya kıyasla 55,04 MPa'ya ulaştı ve kopma anındaki uzamayı %5,75'ten %7,24'e çıkardı. Termal olarak, borik asit cam geçiş sıcaklığını 58°C'den 61°C'ye ve erime sıcaklığını 179°C'den 184°C'ye hafifçe artırarak polimer kararlılığında iyileşme gösterdi. Şişme davranışı, bazı formülasyonlar için %50'ye kadar su alımıyla 9. gün civarında zirveye ulaştı. Aynı zamanda, ilaç salım profilleri 15 gün boyunca sürekli salım sergiledi ve düşük ilaç yüklemelerinde 9. günde %4,24'lük maksimum salım miktarına ulaştı. MCF-7 meme kanseri hücrelerine karşı sitotoksisite testleri önemli canlılık azalmaları gösterdi, özellikle en yüksek 5-FU konsantrasyonunda (%30) 15 gün sonra %33,39 canlılığa ulaşıldı. Bu bulgular, 3B baskı yoluyla üretilen borik asit ve 5-FU katkılı PLA kompozitlerinin, özellikle hedefli kanser tedavisinde ileri biyomedikal uygulamalar geliştirmek için uygun, umut verici mekanik ve kontrollü salımlı ilaç verme özellikleri sunduğunu göstermektedir.

Ethical Statement

Bu makalede insan veya hayvan denekleri kullanılmamıştır.

Supporting Institution

Bu makale için hiçbir maddi fon desteği kullanılmamıştır.

References

  • Ailincai, D., Gavril, G., & Marin, L. (2020). Polyvinyl alcohol boric acid – A promising tool for the development of sustained release drug delivery systems. Materials Science and Engineering: C, 107, 110316. https://doi.org/10.1016/j.msec.2019.110316
  • Aktas, B., Yalcin, S., Dogru, K., Uzunoglu, Z., & Yilmaz, D. (2019). Structural and radiation shielding properties of chromium oxide doped borosilicate glass. Radiation Physics and Chemistry, 156, 144-149. https://doi.org/10.1016/j.radphyschem.2018.11.012
  • Aktas, B., Das, R., Acikgoz, A., Demircan, G., Yalcin, S., Aktas, H.G., & Balak, M.V. (2024). DLP 3D printing of TiO2-doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation. Materials Today Communications, 38, 107872. https://doi.org/10.1016/j.mtcomm.2023.107872
  • Aliasgharlou, N., Sana, F.A., Khoshbakht, S., Zolfaghari, P., & Charkhian, H. (2020). Fabrication and characterization of boric acid-crosslinked ethyl cellulose and polyvinyl alcohol films as potential drug release systems for topical drug delivery. Turkish Journal of Chemistry, 44(6), 1723-1732. https://doi.org/10.3906/kim-2008-23
  • Alkabbanie, R., Aktas, B., Demircan, G., & Yalcin, S. (2024). Short carbon fiber-reinforced PLA composites: influence of 3D-printing parameters on the mechanical and structural properties. Iranian Polymer Journal, 33(8), 1065-1074. https://doi.org/10.1007/s13726-024-01315-8
  • Avci, A., Akdogan Eker, A., Bodur, M.S., & Küçükyildirim, B.O. (2024). The effects of various boron compounds on the thermal, microstructural and mechanical properties of PLA biocomposites. Thermochimica Acta, 731, 179656. https://doi.org/10.1016/j.tca.2023.179656
  • Azimi, S., Esmaeil Lashgarian, H., Ghorbanzadeh, V., Moradipour, A., Pirzeh, L., & Dariushnejad, H. (2022). 5-FU and the dietary flavonoid carvacrol: a synergistic combination that induces apoptosis in MCF-7 breast cancer cells. Medical Oncology, 39(12), 253. https://doi.org/10.1007/s12032-022-01863-0
  • Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Vlachopoulos, A., Koumentakou, I., & Bikiaris, D.N. (2021). Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 13(11), 1822. https://doi.org/10.3390/polym13111822
  • Byun, H., Hong, B., Nam, S.Y., Jung, S.Y., Rhim, J.W., Lee, S.B., & Moon, G.Y. (2008). Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromolecular Research, 16, 189-193. https://doi.org/10.1007/BF03218851.
  • Carotenuto, P., Pecoraro, A., Brignola, C., Barbato, A., Franco, B., Longobardi, G., ... & Russo, A. (2023). Combining β-Carotene with 5-FU via Polymeric Nanoparticles as a Novel Therapeutic Strategy to Overcome uL3-Mediated Chemoresistance in p53-Deleted Colorectal Cancer Cells. Molecular Pharmaceutics, 20(5), 2326-2340.
  • Chavoshi, S., Rabiee, M., Rafizadeh, M., Rabiee, N., Shamsabadi, A. S., Bagherzadeh, M., ... & Tayebi, L. (2019). Mathematical modeling of drug release from biodegradable polymeric microneedles. Bio-Design and Manufacturing, 2, 96-107. https://doi.org/10.1007/s42242-019-00041-y
  • Chieng, B.W., Azowa, I.N., Yunus, W.M.Z.W., & Hussein, M.Z. (2014). Effects of graphene nanopletelets on poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites. Advanced materials research, 1024, 136-139.
  • Chu, L., Jiang, G., Hu, X-L., James, T.D., He, X-P., Yaping Li, Y., & Tang, T. (2018). Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization. Journal of Materials Chemistry B, 6, 1658-1667. https://doi.org/10.1039/C7TB03353B
  • Croitoru, A., Karaçelebi, Y., Saatcioglu, E., Altan, E., Ulag, S., Aydoğan, H., … & Ficai, A. (2021). Electrically triggered drug delivery from novel electrospun poly(lactic acid)/graphene oxide/quercetin fibrous scaffolds for wound dressing applications. Pharmaceutics, 13(7), 957. https://doi.org/10.3390/pharmaceutics13070957
  • Dash, T.K., & Konkimalla, V.B. (2012). Polymeric modification and its implication in drug delivery: Poly-ε-caprolactone (PCL) as a model polymer. Molecular Pharmaceutics, 9(9), 2365-2379.
  • Demircan, G., Kisa, M., Özen, M., Açikgöz, A., Aktaş, B., & Ali Kurt, M. (2020). A bio-based epoxy resin from rosin powder with improved mechanical performance. Emerging Materials Research, 9(4), 1076-1081. https://doi.org/10.1680/jemmr.20.00001
  • Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V., & Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 12, 601626. https://doi.org/10.3389/fphar.2021.601626
  • Gumushan Aktas, H., & Akgun, T. (2018). Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomedicine & Pharmacotherapy, 106, 770-775. https://doi.org/10.1016/j.biopha.2018.07.008
  • Gumushan‑Aktas, H., & Altun, S. (2016). Effects of Hedera helix L. extracts on rat prostate cancer cell proliferation and motility. Oncology Letters, 12, 2985-2991. https://doi.org/10.3892/ol.2016.4941
  • Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2021). Drug release study of the chitosan-based nanoparticles. Heliyon, 8(1), e08674. https://doi.org/10.1016/j.heliyon.2021.e08674
  • Hu, J., Li, A., Guo, Y., Ma, T., & Feng, S. (2023). The relationship between tumor metabolism and 5-fluorouracil resistance. Biochemical Pharmacology, 218, 115902. https://doi.org/10.1016/j.bcp.2023.115902
  • Jubeen, F., Ijaz, S., Jabeen, I., Aftab, U., Mehdi, W., Altaf, A., Alissa, S.A., Al-Ghulikah, H.A., Ezzine, S., Bejaoui, I., & Iqbal, M. (2022). Anticancer potential of novel 5-Fluorouracil co-crystals against MCF7 breast and SW480 colon cancer cell lines along with docking studies. Arabian Journal of Chemistry, 15(12), 104299. https://doi.org/10.1016/j.arabjc.2022.104299
  • Kangallı, E., & Bayraktar, E. (2022). Preparation and characterization of poly(lactic acid)/boron oxide nanocomposites: Thermal, mechanical, crystallization, and flammability properties. Journal of Applied Polymer Science, 139(28), e52521. https://doi.org/10.1002/app.52521
  • Karavelidis, V., & Bikiaris, D. (2012). New biocompatible aliphatic polyesters as thermosensitive drug nanocarriers. Application in Targeting Release Pharmaceutical Systems for Local Cancer Treatment. Journal of Nanomedicine Nanotechnology, 3(134), 2. https://doi.org/10.4172/2157-7439.1000134
  • Khaliq, H., Juming, Z. & Ke-Mei, P. (2018). The Physiological Role of Boron on Health. Biological Trace Element Research, 186, 31–51. https://doi.org/10.1007/s12011-018-1284-3
  • Kumar, S., Singh, S., Senapati, S., Singh, A.P., Ray, B., & Maiti, P. (2017). Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts. International Journal of Biological Macromolecules, 104, 487-497. https://doi.org/10.1016/j.ijbiomac.2017.06.033
  • Lasprilla, A.J., Martinez, G.A., Lunelli, B.H., Jardini, AL., & Filho, R. M. (2011). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. https://doi.org/10.1016/j.biotechadv.2011.06.019
  • Lee, J.H., & Yeo, Y. (2015). Controlled drug release from pharmaceutical nanocarriers. Chemical Engineering Science, 125, 75-84. https://doi.org/10.1016/j.ces.2014.08.046
  • Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual review of chemical and biomolecular engineering, 1(1), 149-173. https://doi.org/10.1146/annurev-chembioeng-073009-100847
  • Majola, A., Vainionpää, S., Vihtonen, K., Mero, M., Vasenius, J., Törmälä, P., & Rokkanen, P. (1991). Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clinical Orthopaedics and Related Research (1976-2007), 268, 260-269.
  • Makadia, H.K., & Siegel, S.J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377-1397. https://doi.org/10.3390/polym3031377
  • Mamidi, N., Gonzalez-Ortiz, A., Lopez Romo, I., Barrera, E.V. (2019). Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics, 11(12), 621. https://doi.org/10.3390/pharmaceutics11120621
  • Middleton, J.C., & Tipton, A.J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346. https://doi.org/10.1016/S0142-9612(00)00101-0
  • Mngadi, S., Singh, M., & Mokhosi, S. (2021). PVA coating of ferrite nanoparticles triggers pH-responsive release of 5-fluorouracil in cancer cells. Journal of Polymer Engineering, 41(7), 597-606.
  • Musumeci, T., Ventura, C., Giannone, I., Ruozi, B., Montenegro, L., Pignatello, R., & Puglisi, G. (2006). PLA/PLGA nanoparticles for sustained release of docetaxel. International Journal of Pharmaceutics, 325(1-2), 172-179. https://doi.org/10.1016/j.ijpharm.2006.06.023
  • Nofar, M., & Park, C.B. (2014). Poly(lactic acid) foaming. Progress in Polymer Science, 39(10), 1721–1741.
  • Olukman, M., Şanlı, O., & Solak, E.K. (2012). Release of anticancer drug 5-Fluorouracil from different ionically crosslinked alginate beads. Journal of Biomaterials and Nanobiotechnology, 3(4), 469-479.
  • Öcal, H., Arıca-Yegin, B., Vural, I., Goracinova, K., & Çalış, S. (2014). 5-Fluorouracil-loaded PLA/PLGA PEG–PPG–PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Drug Development and Industrial Pharmacy, 40(4), 560-567. https://doi.org/10.3109/03639045.2013.775581
  • Pirkani, Z., Kamalinejad, F., Zare, Y., Abdollahi Boraei, S.B. (2024). Advancing Breast Cancer Treatment: The Role of PLA-based Scaffolds in Tumor Microenvironment and Drug Delivery. Multidisciplinary Cancer Investigation, 8(1), 1-14. https://doi.org/10.61186/mci.8.1.2
  • Proikakis, C., Tarantili, P., & Andreopoulos, A. (2006). The role of polymer/drug interactions on the sustained release from poly(dl-lactic acid) tablets. European Polymer Journal, 42(12), 3269-3276. https://doi.org/10.1016/j.eurpolymj.2006.08.023
  • Rani, K.V., Chandwani, N., Kikani, P., Nema, S.K., Sarma, A.K., & Sarma, B. (2018). Optimization and surface modification of silk fabric using DBD air plasma for improving wicking properties. The Journal of the Textile Institute, 109(3), 368-375.
  • Rasal, R.M., Janorkar, A.V., & Hirt, D.E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338–356.
  • Rasul, S.Y., Aktas, B., Yilmaz, D., Pathman, A.F., Yalcin, S., & Acikgoz, A. (2025). Impact of HfO2 on the structural, thermal, gamma, and neutron shielding properties of boro-tellurite glasses. Inorganic Chemistry Communications, 113993. https://doi.org/10.1016/j.inoche.2025.113993
  • Robert, P., Mauduit, J., Frank, R.M., & Vert, M. (1993). Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration. Biomaterials, 14(5), 353–358. https://doi:10.1016/0142-9612(93)90054-6
  • Samy, M., Abdallah, H.M., Awad, H.M., & Ayoub, M.M. (2022). In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles. Polymer Bulletin, 1-27. https://doi.org/10.1007/s00289-021-03804-9
  • Scorei, R.I., & Popa, R., Jr (2010). Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anti-cancer agents in medicinal chemistry, 10(4), 346–351. https://doi.org/10.2174/187152010791162289
  • Singh, R., & Lillard, J.W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215-223. https://doi.org/10.1016/j.yexmp.2008.12.004
  • Tawiah, B., Yu, B., Cheung, W.Y., Chan, S.Y., Yang, W., & Fei, B. (2018). Synthesis and application of synergistic azo-boron-BPA / polydopamine as efficient flame retardant for poly(lactic acid). Polymer Degradation and Stability, 152, 64-74. https://doi.org/10.1016/j.polymdegradstab.2018.03.018
  • Vedelago, J., Mattea, F., Triviño, S., Montesinos, M.D.M., Keil, W., Valente, M., & Romero, M. (2021). Smart material based on boron crosslinked polymers with potential applications in cancer radiation therapy. Scientific reports, 11(1), 12269. https://doi.org/10.1038/s41598-021-91413-x
  • Vlachopoulos, A., Karlioti, G., Balla, E., Daniilidis, V., Kalamas, T., Stefanidou, M., … & Bikiaris, D.N. (2022). Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics, 14(2), 359. https://doi.org/10.3390/pharmaceutics14020359
  • Wang, X., Liu, J., Zhang, Y., Kristiansen, P.M., Islam, A., Gilchrist, M., & Zhang, N. (2023). Advances in precision microfabrication through digital light processing: system development, material and applications. Virtual and Physical Prototyping, 18(1). https://doi.org/10.1080/17452759.2023.2248101
  • Wu, Z., Xia, F. & Lin, R. (2024). Global burden of cancer and associated risk factors in 204 countries and territories, 1980–2021: a systematic analysis for the GBD 2021. Journal of Hematology and Oncology, 17, 119. https://doi.org/10.1186/s13045-024-01640-8
  • Yuan, X., Zhu, W., Yang, Z., He, N., Chen, F., Han, X., & Zhou, K. (2024). Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. Advanced Materials, 36(34), 2403641. https://doi.org/10.1002/adma.202403641
  • Yun, Q., Wang, S.S., Xu, S., Yang, J.P., Fan, J., Yang, L.L., Chen, Y., Fu, S.Z., & Wu, J.B. (2017). Use of 5-Fluorouracil Loaded Micelles and Cisplatin in Thermosensitive Chitosan Hydrogel as an Efficient Therapy against Colorectal Peritoneal Carcinomatosis. Macromolecular Bioscience, 17(4), 1600262. https://doi.org/10.1002/mabi.201600262
There are 54 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Hatice Gumushan Aktas 0000-0002-6650-184X

Submission Date March 27, 2025
Acceptance Date May 31, 2025
Early Pub Date June 10, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Gumushan Aktas, H. (2025). Chemotherapeutic Drug Delivery from 3D-Printed Biodegradable Polymer for Breast Cancer Treatment. Commagene Journal of Biology, 9(1), 103-111. https://doi.org/10.31594/commagene.1667137