Determination of Pesticide-Induced Genotoxicity on Soybean (Glycine max L.)
Year 2019,
, 83 - 87, 20.12.2019
Asuman Deveci Özkan
,
Özlem Aksoy
Abstract
Pesticides are used in agriculture and cause
side effects in plants and can be transported to products which we consume. Genotoxic
chemical substances distributed to environment and higher plants such as Glycine max have been used as an
indicator plants that show the genotoxic effects of environmental chemical
pollutants. In this respect we investigated the potential genotoxic effect of
three different pesticides (Pomarsol Forte WP 80 as a fungucide, Arrivo 25 EC
as an insecticide, and The End EC as an herbicide) on G. max (Glycine max L.) for the first time. In order to
determine the genotoxic effects of these pesticides on G max. Median EC
(effective concentration) determination analysis, RAPD-PCR (randomly amplified
polymorphic DNA-polymerase chain reaction) assay and protein analysis were
used. Our results indicated that The End as a herbicide had more inhibitory
effects on G. max root growth compare
to the other pesticides. 20 RAPD primers were used, eighteen primers gave
stable results while 11 of them were polymorphic and 7 of them showed the same
band profile. Percentage of polymorphism was found as 20%. Total protein
content was significantly decreased by insecticide treatment but increased in
herbicide treatment (p<0.05). In
conclusion these results suggest that these pesticides have genotoxic effects
on G. max and the use of these
chemicals must be reduced to avoid exposure to humans and the environment.
Supporting Institution
Kocaeli University Scientific Research Projects Coordination Unit
Thanks
This study is supported by Kocaeli University Scientific Research Projects Coordination Unit. Project Number: 2011/43.
References
- Aksoy, O., Dane, F., Sanal F.E., & Aktac, T. (2007). The effects of Fusilade (Fluazifop p-butyl) on germination, mitotic frequency and a-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta Physiologia Plantarium, 29, 115-120.
- Angelis K.J., McGuffie, M., Menke, M., & Schubert, I. (2000). Adaption to alkylation damage in DNA measured by the comet assay. Environmental Molecular Mutagenesis, 36, 146-150.
- Atienzar, F.A., & Jha, A.N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research, 613, 76–102.
- Atienzar, F.A., Conradi, M., Evenden, A., Jha A., & Depledge, M. (1999). Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed tobenzo(a)pyrene. Environmental Toxicology and Chemistry, 18, 2275-2282.
- Atienzar, F.A., Venier, P., Jha, A.N., & Depledge M.H. (2002). Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutation Research, 521, 151-163.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Analytical Biochemistry, 72, 248-254.
- Cenkci, S., Cigerci, I.H., Yıldız, M., Ozay, C., Bozdağ A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental Experimental Botany, 67, 467-473.
- Enan, M.R. (2006). Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals. Biotechnology and Applied Biochemistry, 43, 147-154.
- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-5.
- Liu, W., Yang, Y. S., Zhou, Q., Xie, L., Li, P., & Sun, T. (2007). Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere, 67, 1155-1163.
- Martins, N., Lopes, I., Brehm, A., & Ribeiro, R. (2005). Cytochrome B gene partial sequence and RAPD analysis of two Daphnia longispina lineages differing in their resistance to copper. Bulletin of Environmental Contamination and Toxicology, 74, 755-760.
- Mosleh, Y.Y., Ismail, S.M., & Ahmed M.T. (2003). Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea caliginosa under laboratory conditions. Environmental Toxicology, 18, 338-346.
- Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590.
- Poli, P., Buschini, A., Restivo, F.M., Ficarelli, A., Cassoni, F., Ferrero, I., & Rossi, C. (1999). Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis, 14, 547-556.
- Saraswati, R., Matoh, T., Phupaibul, P., Lumpkin, T.A., & Kobayashi, M. (1993). Identification of Sesbania species from electrophoretic patterns of seed protein. Tropical Agriculture (Trinidad), 70, 282-285.
- Singh, P.K, & Tewari, R.K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107-112.
- Villani, P. (1998). The dithiocarbamate derivative thiram has currently widespread use as a contact fungicide for the pro-tection of vegetable crops and for mould control in a variety of fields. Food Chemical Toxicology, 36, 155-164.
- Wang, H., Chang, K.F., Hwang, S.F., Turnbull, G.D., & Howard, R.J. (2000). Effects of root inoculation and fungicide soil drenches on sclerotinia blight of coneflower. Canadian Journal of Plant Science, 80, 909-915.
- Wang, J., Lu, Y., & Shen G. (2007). Combine deffects of cadmium and butachloron soil enzyme activities and microbial community structure. Environmental Geology, 51, 1221-1228.
- Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., & Tingey S.V., (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531-6535.
- Wolf, H.D., Blust, R., & Backeljau, T. (2004). The use of RAPD in ecotoxicology. Mutation Research, 566, 249-262.
- Yıldız, M., & Arıkan, E.S. (2008). Genotoxicity testing of quizalofop-P-ethyl herbicide using the Allium cepa anaphase–telophase chromosome aberration assay. Caryologia, 61, 45-52.
- Yıldız, M., Cigerci, I. H., Konuk, M., Fidan, A.F. & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75, 934-938.
Pestisit-Kaynaklı Genotoksisitenin Soya Fasulyesinde (Glycine max L.) Belirlenmesi
Year 2019,
, 83 - 87, 20.12.2019
Asuman Deveci Özkan
,
Özlem Aksoy
Abstract
Pestisitler, tarımsal alanlarda yaygın olarak
kullanılırken bitkilerde yan etkilere neden olmaktadır ve tükettiğimiz ürünlere
de taşınabilmektedir. Genotoksik kimyasal maddeler çevreye yayılmaktadır ve Glycine max gibi yüksek yapılı bitkiler,
kimyasal çevre kirleticilerinin genotoksik etkilerini gösteren indikatör
bitkiler olarak kullanılmaktadır. Bu bağlamda, mevcut çalışmada ilk kez üç
farklı pestisitin (fungusit olarak Pomarsol Forte WP 80, insektisit olarak
Arrivo 25 EC ve herbisit olarak The End EC) potansiyel genotoksik etkisi soya
fasulyesi (Glycine max L.) üzerinde
araştırılmıştır. G. max üzerindeki genotoksik etkiyi belirlemek için
ortalama etkili konsantrasyon (median EC), RAPD-PCR (rastgele amplifiye
polimorfik DNA-polimeraz zincir reaksiyonu) ve protein analizleri
kullanılmıştır. Elde edilen sonuçlar bir herbisit olarak The END pestisitinin
diğerlerine göre G. max kök büyümesi
üzerinde daha fazla inhibe edici etkisi olduğu saptanmıştır. 20 RAPD primeri
kullanılmış; bunlardan 18 primer stabil sonuç verirken, 11 tanesi polimorfik ve
7 tanesi benzer bant profili göstermiştir. Polimorfizm yüzdesi, % 20 olarak
bulunmuştur. Toplam protein içeriği insektisit muamelesi ile kontrol grubuna
göre belirgin şekilde azalırken, herbisit muamelesi sonrası anlamlı olarak
artmıştır (p <0.05). Sonuç olarak elde edilen veriler bu pestisitlerin G. max üzerinde belirgin genotoksik
etkilerinin olduğunu ve bu kimyasallara karşı insan ve çevresel maruziyetin
atmasından dolayı kullanımdan kaçınılması gerektiğini göstermektedir.
References
- Aksoy, O., Dane, F., Sanal F.E., & Aktac, T. (2007). The effects of Fusilade (Fluazifop p-butyl) on germination, mitotic frequency and a-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta Physiologia Plantarium, 29, 115-120.
- Angelis K.J., McGuffie, M., Menke, M., & Schubert, I. (2000). Adaption to alkylation damage in DNA measured by the comet assay. Environmental Molecular Mutagenesis, 36, 146-150.
- Atienzar, F.A., & Jha, A.N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research, 613, 76–102.
- Atienzar, F.A., Conradi, M., Evenden, A., Jha A., & Depledge, M. (1999). Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed tobenzo(a)pyrene. Environmental Toxicology and Chemistry, 18, 2275-2282.
- Atienzar, F.A., Venier, P., Jha, A.N., & Depledge M.H. (2002). Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutation Research, 521, 151-163.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Analytical Biochemistry, 72, 248-254.
- Cenkci, S., Cigerci, I.H., Yıldız, M., Ozay, C., Bozdağ A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental Experimental Botany, 67, 467-473.
- Enan, M.R. (2006). Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals. Biotechnology and Applied Biochemistry, 43, 147-154.
- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-5.
- Liu, W., Yang, Y. S., Zhou, Q., Xie, L., Li, P., & Sun, T. (2007). Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere, 67, 1155-1163.
- Martins, N., Lopes, I., Brehm, A., & Ribeiro, R. (2005). Cytochrome B gene partial sequence and RAPD analysis of two Daphnia longispina lineages differing in their resistance to copper. Bulletin of Environmental Contamination and Toxicology, 74, 755-760.
- Mosleh, Y.Y., Ismail, S.M., & Ahmed M.T. (2003). Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodea caliginosa under laboratory conditions. Environmental Toxicology, 18, 338-346.
- Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590.
- Poli, P., Buschini, A., Restivo, F.M., Ficarelli, A., Cassoni, F., Ferrero, I., & Rossi, C. (1999). Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis, 14, 547-556.
- Saraswati, R., Matoh, T., Phupaibul, P., Lumpkin, T.A., & Kobayashi, M. (1993). Identification of Sesbania species from electrophoretic patterns of seed protein. Tropical Agriculture (Trinidad), 70, 282-285.
- Singh, P.K, & Tewari, R.K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107-112.
- Villani, P. (1998). The dithiocarbamate derivative thiram has currently widespread use as a contact fungicide for the pro-tection of vegetable crops and for mould control in a variety of fields. Food Chemical Toxicology, 36, 155-164.
- Wang, H., Chang, K.F., Hwang, S.F., Turnbull, G.D., & Howard, R.J. (2000). Effects of root inoculation and fungicide soil drenches on sclerotinia blight of coneflower. Canadian Journal of Plant Science, 80, 909-915.
- Wang, J., Lu, Y., & Shen G. (2007). Combine deffects of cadmium and butachloron soil enzyme activities and microbial community structure. Environmental Geology, 51, 1221-1228.
- Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., & Tingey S.V., (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531-6535.
- Wolf, H.D., Blust, R., & Backeljau, T. (2004). The use of RAPD in ecotoxicology. Mutation Research, 566, 249-262.
- Yıldız, M., & Arıkan, E.S. (2008). Genotoxicity testing of quizalofop-P-ethyl herbicide using the Allium cepa anaphase–telophase chromosome aberration assay. Caryologia, 61, 45-52.
- Yıldız, M., Cigerci, I. H., Konuk, M., Fidan, A.F. & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75, 934-938.