Research Article
BibTex RIS Cite

Kuraklık Stresi Altındaki Pamuk Bitkisine (Gossypium hirsutum L.) Dışsal Prolin Uygulamasının Bazı Fizyolojik Parametreler Üzerindeki Etkisi

Year 2020, , 126 - 133, 31.12.2020
https://doi.org/10.31594/commagene.783027

Abstract

Bitkiler kuraklık stresi gibi birçok strese maruz kalmaktadırlar. Araştırmamızda PEG 6000 çözeltisi kullanılmış, 3 adet kuraklık seviyesi oluşturulmuştur (%0, %10, %20 g L-1). Bu oluşturulan kuraklık grupları da kendi içinde 0 (kontrol: prolin çözeltisi uygulanmamış) ve 2 mM prolin çözeltisi uygulanarak iki alt gruba ayrılmıştır. Pamuk bitkisinde farklı kuraklık seviyelerinin oluşturduğu zararlanmaları görüp, dışsal prolin uygulamasının bu zararlanmayı ne kadar iyileştirdiğini görmek amaçlanmıştır. Deneme deseni, saksılarda üç tekrarlamalı olarak yapılmıştır ve deneme deseni iklimlendirme odasında iki kez kurulmuştur. Stres ve kontrol gruplarında klorofil a ve b, karotenoid, toplam çözünmüş protein, toplam çözünmüş karbonhidrat ve bazı besin elementlerinin değerlerinin değişimi incelenmiştir. Artan kuraklık dozuna bağlı olarak klorofil a ve b’nin azaldığı; karotenoidin, toplam çözünmüş protein ve karbonhidratın arttığı; K elementinin arttığı, Ca Mg, Na ve P elementinin azaldığı görülmüştür. Bununla birlikte prolin uygulamasıyla pamuk bitkisindeki kuraklık stresinin olumsuz etkilerinin azaldığı gözlenmiştir.

Supporting Institution

HÜBAK

Project Number

18162

Thanks

Bu makalede elde edilen sonuçlar Nimet Kılınçoğlu’nun 18162 nolu doktora tez proje çalışmasından elde edilmiştir. Tezin finansal desteklemesi Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğünce yapılmıştır.

References

  • Ali, G., Srivastava, P.S., & Iqbal, M. (1999). Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biologia Plantarum, 42, 89–95. https://doi.org/10.1023/A:1002127711432
  • Ali, Q., & Ashraf, M. (2011). Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environmental and Experimental Botany, 71(2), 249–259. https://doi.org/10.1016/j.envexpbot.2010.12.009
  • Andersen, N., Jensen, R. & Lösch, R. (1992). The interaction effects of potassium and drought in field-grown barley. 1. Yield, water-use efficiency and growth. Journal Acta Agriculturae Scandinavica, Section B Soil & Plant Science, 42, 34–44. https://doi.org/10.1080/09064719209410197
  • Arslan, M., Aksu, E., & Doğan E. (2018). Kuraklık stresine tolerans bakımından iki mürdümük genotipinin değerlendirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(3), 261-267. https://doi.org/10.30910/turkjans.448349
  • Ashraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stres resistance. Environmental and Experimental Botany, 60(3), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Ashraf, M., & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1), 17–42. https://doi.org/10.1080/07352689409701906.
  • Atasoy, G. (2013). Pamukta (Gossypium Spp.) kuraklik ve sıcaklık stresinin bazi agronomik, fizyolojik ve biyokimyasal özelliklere etkisinin incelenmesi (Yüksek Lisans Tezi). Ege Universitesi, İzmir, Türkiye.
  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23–58. https://doi.org/10.1080/07352680590910410
  • Başal, H., & Aydın, Ü. (2006). Water stress in cotton (Gossypium hirsutum L.). Journal of Agriculture Faculty of Ege University, 43(3), 101-111.
  • Beringer, H., & Trolldenier, G. (1978). Influence of K nutrition on response to environmental stres. Potassium research - review and trends. Proceedings of the 11th Congress the International Potash Institute, 1978 1979., Hannover-Kirchrode, Germany, Ipi Press, pp. (189-222)
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Can, N. (2013). Pamuk Çeşitlerinde (Gossypium hirsutum L. ) Kuraklik Stresi Etkilerinin Fizyolojik Olarak İncelenmesi (Yüksek Lisans Tezi). Harran Universitesi, Şanlıurfa, Türkiye.
  • Chartzoulaki, K., Patakas, A., Kodifis, G., Bosabalidis, A., & Nostou, A. (2002). Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae, 95(1-2), 39–50. https://doi.org/10.1016/S0304-4238(02)00016-X
  • Çınar, I. (2003). Carotenoid Pigment Loss of Freeze-dried Plant Samples under Different Storage Conditions, Food Science and Technology/LWT, 37(3), 363-367. https://doi.org/10.1016/j.lwt.2003.10.006
  • Çırak, C., & Esendal, E. (2006). Soyada Kuraklık Stresi. OMÜ Ziraat Fakultesi Dergisi, 21(2), 231-237.
  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–786. https://doi.org/10.1007/s004250000458
  • Dubois, M., Gilles, A., Hamilton, K., Rebers, A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Fageria, K., Baligar, C., & Clark B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–267. https://doi.org/10.1016/S0065-2113(02)77015-6
  • Faver, L., Gerik, J., Thaxton, M., & El-Zik M. (1996). Late season water stress in cotton: II. Leaf gas exchange and assimilation capacity. Crop Science, 36(4), 922–928. https://doi.org/10.2135/cropsci1996.0011183X003600040018x
  • Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plant: stomatal and non-stomatal limitation revisited. Annals of Botany, 89(2), 183-189. https://doi.org/10.1093/aob/mcf027
  • Grimes, D.W., & El-zik, K.M. (1990). Cotton. In: Stewart, B.A., Dr. Nielsen (Eds.), Irrigation of Agricultural Crops-Agronomy Monograph, No: 30, p.741-748. ASA-CSSA-SSSA, 677 South Segoe Road, Madison, WI 53711, USA.
  • Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., & Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119(3), 257–263. https://doi.org/10.1016/j.scienta.2008.08.006
  • Hare, P.D., & Cress, W.A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102. https://doi.org/10.1023/A:1005703923347
  • Havlin, L., Beaton, D., Tisdale, L., & Nelson, L. (2004). Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall: Upper Saddle River. London, 124: 406–425.
  • Hsu S.Y., Hsu, T, & Kao, C.H. (2003). The effect of polyethylene glycol on proline accumulation in rice leaves. Biologia Plantarum, 46, 73-77. https://doi.org/10.1023/A:1022362117395
  • Kalefetoğlu, T., & Ekmekçi, Y., (2005). The effect of drought on plants and tolerance mechanisms. Journal of Science, 18(4), 723-740
  • Kerepesi, I., & Galiba, G. (2000). Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop science, 40(2), 482487. https://doi.org/10.2135/cropsci2000.402482x
  • Kim, J., Mahe, A., Brangeon, J., & Prioul, J. (2000). A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiology, 124, 71–84. https://doi.org/10.1104/pp.124.1.71
  • Kishore, K.P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao K.R.S.S., ...... & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth andabiotic stress tolerance. Current Science , 88(3), 424-438.
  • Lichtenthaler, H.K. (1987). Pigments of photosynthetic biomembranes and carotenoids:. Methods in enzimology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  • Marschner, H. (1995). Mineral nutrition of higher plants. 2nd edn. Academic Press, New York, pp. 889.
  • Mengel, K., & Arneke, W. (1982). Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiol. Plant., 54(4), 402–408. https://doi.org/10.1111/j.1399-3054.1982.tb00699.x
  • Mirjahanmardi, H., & Ehsanzadeh, P. (2016). Iron supplement ameliorates drought-induced alterations in physiological attributes of fennel (Foeniculum vulgare). Nutrient Cycling in Agroecosystems, 106, 61–76. https://doi.org/10.1007/s10705-016-9789-7
  • Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C.I., & Therios, I. (2011). Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regulation, 65, 315–325. https://doi.org/10.1007/s10725-011-9604-z
  • Nikolaeva, K., Maevskaya, N., Shugaev, G., & Bukhov, G. (2010). Effect of Drought on Chlorophyll Content and Antioxidant Enzyme Activities in Leaves of Three Wheat Cultivars Varying in Productivity. Russian Journal of Plant Physiology, 57, 87–95. https://doi.org/10.1134/S1021443710010127
  • Özturk, L., & Demir, Y. (2002). In vivo and in vitro protective role of proline. Plant Growth Regulation, 38, 259-264. https://doi.org/10.1023/A:1021579713832
  • Özüdoğru, T. (2019). Agrıcultural Products Report: Cotton. Institute of agricultural economics and policy development, pages 1-4.
  • Parida, K., Dagaonkar, S., Phalak, S., Umalkar, V., & Aurangabadkar, P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1, 37-48. https://doi.org/10.1007/s11816-006-0004-1
  • Pelleschi, S., Rocher, P., & Prioul, L. (1997). Effect of water restriction on carbonhydrate metabolism and photosynthesis in mature maize leaves. Plant Cell and Environment, 20, 493-503. https://doi.org/10.1046/j.1365-3040.1997.d01-89.x
  • Pettigrew, W.T., Molin, W.T., & Stetina, S.R. (2009). Impact of varying planting dates and tillage systems on cotton growth and lint yield production. Agron. J. 101, 1131-1138. https://doi.org/10.2134/agronj2009.0073
  • Peynircioğlu, C. (2014). Kuraklik stresine dayanikli pamuk (Gossypium hirsutum L.) çeşit islahinda kullanilacak pamuk genotiplerinin belirlenmesi (Yüksek lisans tezi). Adnan Menderes Üniversitesi, Aydın, Türkiye.
  • Rahman, H., Malik, S.A., & Saleem, M. (2004). Heat Tolerance of Upland Cotton During the Fruiting Stage Evaluated Using Cellular Membrane Thermostability. Field Crops Research, 85,149–158. https://doi.org/10.1016/S0378- 4290(03)00159-X
  • Reddy, R., Kakani, G., Zhao, D., Koti S., & Gao, W. (2004). Interactive Effects of Ultraviolet-B Radiation and Temperature on Cotton Physiology, Growth, Development and Hyperspectral Reflectance. Photochemistry and Photobiology, 79, 416–427. https://doi.org/10.1111/j.1751-1097.2004.tb00029.x
  • Rhodes, D., & Hanson A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357–384. https://doi.org/10.1146/annurev.pp.44.060193.002041
  • Salvucci, E., & Crafts-Brandner, J. (2004). Inhibition of Photosynthesis by Heat Stress: The Activation State of Rubisco as a Limiting Factor in Photosynthesis. Physiologia Plantarum, 120,179–186. https://doi.org/10.1111/j.0031-9317.2004.0173.x
  • Samarah, N., Mullen, R., & Cianzio, S. (2004). Size distribution and mineral nutrients of soybean seeds in response to drought stress. Journal of Plant Nutrition, 27, 815–835. https://doi.org/10.1081/PLN-120030673
  • Sánchez, J., De Andrés, F., Tenorio, L., & Ayerbe, L. (2004). Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research, 86, 81–90. https://doi.org/10.1016/S0378-4290(03)00121-7
  • Serraj, R., & Sinclair, T.R. (2000). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25,333–341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  • Shafaqat, A., Shengguan, C., Fanrong Z., Boyin, Q., & Guoping, Z. (2012). Effect Of Salınıty And Hexavalent Chromıum Stresses On Uptake And Accumulatıon Of Mıneral Elements In Barley Genotypes Dıfferıng In Salt Tolerance. Journal of Plant Nutrion, 35, 827–839. https://doi.org/10.1080/01904167.2012.663438
  • Soil Survey Laboratory Methods Manual. (2004). Soil Survey Investigation Report United States Department of Agriculture Natural Resources Conservation Sevice No:42. Version 4.0 November.
  • Srinivas, V., & Balasubramanian, D. (1995). Proline is a protein-compatible hydrotrope. Langmuir , 11: 2830–2833. https://doi.org/10.1021/la00007a077
  • Taş, İ., & Kırnak H. (2011). Drip irrigation method of Sanliurfa Pepper irrigated (Capsicum annum L.) Irrigation Program. Gaziosmanpaşa University Journal of agricultural , 28(1), 103-112.
  • Thimmanaik, S., Kumar, G., Kumari, J., Suryanarayana, N., & Sudhakar, C. (2002). Photosynthesis and the enzymes of photosynthetic carbon reduction cycle in mulbery during water stres and recovery. Photosynthetica, 40, 233-236.
  • Ullah, I.R. (2008). Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): Leaf gas exchange and productivity. Flora, 203: 105–115. https://doi.org/10.1016/j.flora.2007.12.001
  • USDA, (2019). Cotton World Markets and Trade, World Production, Markets and Trade Reports, https://www.fas.usda.gov/data_analysis/scheduled-reports-2019.
  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids, 35, 753–759.
  • Wu, J., Wang, Y., & Zhu, C. (2011). Overexpression of a cotton cyclophilin gene in transgenic tobacco plants confer dual tolerance to salt stres and Pseudomanas syringae pv. tabacci infection. Plant Physiology, 12, 79-61. https://doi.org/10.1016/j.plaphy.2011.09.001
  • Zali, G.A., & Ehsanzadeh, P. (2018). Exogenous proline improves osmoregulation, physiological functions,essential oil, and seed yield of fennel. Industrial Crops & Products, 111,133-140.https://doi.org/10.1016/j.indcrop.2017.10.020

The Effect of Exogenous Proline Application on Cotton Plant (Gossypium hirsutum L.) Under Drought Stress on Some Physiological Parameters

Year 2020, , 126 - 133, 31.12.2020
https://doi.org/10.31594/commagene.783027

Abstract

Plants are exposed to many stresses such as drought stress. In our study, PEG 6000 solution was used and 3 drought levels were created (0%, 10%, 20% g L-1). These drought groups were also divided into 2 subgroups by applying 0 (control: no proline solution) and 2 mM proline solution. It was aimed to see the damages caused by different drought levels in the cotton plant and to see how much the exogenous proline application remedy this damage. The trial pattern was made in pots with 3 repetitions, the trial was set up in the air conditioning room twice. The changes in the values of chlorophyll a and b, carotenoid, total dissolved protein, total dissolved carbohydrate and some nutritional elements in the stress and control groups were examined. Chlorophyll a and b decreased due to the increasing drought dose; increased carotenoid, total dissolved protein and carbohydrate; It was observed that the K element increased, Ca, Mg, Na and P element decreased. However, it was observed that the negative effects of drought stress in cotton plants were reduced with proline application.

Project Number

18162

References

  • Ali, G., Srivastava, P.S., & Iqbal, M. (1999). Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biologia Plantarum, 42, 89–95. https://doi.org/10.1023/A:1002127711432
  • Ali, Q., & Ashraf, M. (2011). Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environmental and Experimental Botany, 71(2), 249–259. https://doi.org/10.1016/j.envexpbot.2010.12.009
  • Andersen, N., Jensen, R. & Lösch, R. (1992). The interaction effects of potassium and drought in field-grown barley. 1. Yield, water-use efficiency and growth. Journal Acta Agriculturae Scandinavica, Section B Soil & Plant Science, 42, 34–44. https://doi.org/10.1080/09064719209410197
  • Arslan, M., Aksu, E., & Doğan E. (2018). Kuraklık stresine tolerans bakımından iki mürdümük genotipinin değerlendirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(3), 261-267. https://doi.org/10.30910/turkjans.448349
  • Ashraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stres resistance. Environmental and Experimental Botany, 60(3), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Ashraf, M., & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13(1), 17–42. https://doi.org/10.1080/07352689409701906.
  • Atasoy, G. (2013). Pamukta (Gossypium Spp.) kuraklik ve sıcaklık stresinin bazi agronomik, fizyolojik ve biyokimyasal özelliklere etkisinin incelenmesi (Yüksek Lisans Tezi). Ege Universitesi, İzmir, Türkiye.
  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23–58. https://doi.org/10.1080/07352680590910410
  • Başal, H., & Aydın, Ü. (2006). Water stress in cotton (Gossypium hirsutum L.). Journal of Agriculture Faculty of Ege University, 43(3), 101-111.
  • Beringer, H., & Trolldenier, G. (1978). Influence of K nutrition on response to environmental stres. Potassium research - review and trends. Proceedings of the 11th Congress the International Potash Institute, 1978 1979., Hannover-Kirchrode, Germany, Ipi Press, pp. (189-222)
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Can, N. (2013). Pamuk Çeşitlerinde (Gossypium hirsutum L. ) Kuraklik Stresi Etkilerinin Fizyolojik Olarak İncelenmesi (Yüksek Lisans Tezi). Harran Universitesi, Şanlıurfa, Türkiye.
  • Chartzoulaki, K., Patakas, A., Kodifis, G., Bosabalidis, A., & Nostou, A. (2002). Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulturae, 95(1-2), 39–50. https://doi.org/10.1016/S0304-4238(02)00016-X
  • Çınar, I. (2003). Carotenoid Pigment Loss of Freeze-dried Plant Samples under Different Storage Conditions, Food Science and Technology/LWT, 37(3), 363-367. https://doi.org/10.1016/j.lwt.2003.10.006
  • Çırak, C., & Esendal, E. (2006). Soyada Kuraklık Stresi. OMÜ Ziraat Fakultesi Dergisi, 21(2), 231-237.
  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–786. https://doi.org/10.1007/s004250000458
  • Dubois, M., Gilles, A., Hamilton, K., Rebers, A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
  • Fageria, K., Baligar, C., & Clark B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–267. https://doi.org/10.1016/S0065-2113(02)77015-6
  • Faver, L., Gerik, J., Thaxton, M., & El-Zik M. (1996). Late season water stress in cotton: II. Leaf gas exchange and assimilation capacity. Crop Science, 36(4), 922–928. https://doi.org/10.2135/cropsci1996.0011183X003600040018x
  • Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plant: stomatal and non-stomatal limitation revisited. Annals of Botany, 89(2), 183-189. https://doi.org/10.1093/aob/mcf027
  • Grimes, D.W., & El-zik, K.M. (1990). Cotton. In: Stewart, B.A., Dr. Nielsen (Eds.), Irrigation of Agricultural Crops-Agronomy Monograph, No: 30, p.741-748. ASA-CSSA-SSSA, 677 South Segoe Road, Madison, WI 53711, USA.
  • Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., & Zarrouk, M. (2009). Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae, 119(3), 257–263. https://doi.org/10.1016/j.scienta.2008.08.006
  • Hare, P.D., & Cress, W.A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102. https://doi.org/10.1023/A:1005703923347
  • Havlin, L., Beaton, D., Tisdale, L., & Nelson, L. (2004). Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall: Upper Saddle River. London, 124: 406–425.
  • Hsu S.Y., Hsu, T, & Kao, C.H. (2003). The effect of polyethylene glycol on proline accumulation in rice leaves. Biologia Plantarum, 46, 73-77. https://doi.org/10.1023/A:1022362117395
  • Kalefetoğlu, T., & Ekmekçi, Y., (2005). The effect of drought on plants and tolerance mechanisms. Journal of Science, 18(4), 723-740
  • Kerepesi, I., & Galiba, G. (2000). Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop science, 40(2), 482487. https://doi.org/10.2135/cropsci2000.402482x
  • Kim, J., Mahe, A., Brangeon, J., & Prioul, J. (2000). A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression. Plant Physiology, 124, 71–84. https://doi.org/10.1104/pp.124.1.71
  • Kishore, K.P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao K.R.S.S., ...... & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth andabiotic stress tolerance. Current Science , 88(3), 424-438.
  • Lichtenthaler, H.K. (1987). Pigments of photosynthetic biomembranes and carotenoids:. Methods in enzimology, 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  • Marschner, H. (1995). Mineral nutrition of higher plants. 2nd edn. Academic Press, New York, pp. 889.
  • Mengel, K., & Arneke, W. (1982). Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiol. Plant., 54(4), 402–408. https://doi.org/10.1111/j.1399-3054.1982.tb00699.x
  • Mirjahanmardi, H., & Ehsanzadeh, P. (2016). Iron supplement ameliorates drought-induced alterations in physiological attributes of fennel (Foeniculum vulgare). Nutrient Cycling in Agroecosystems, 106, 61–76. https://doi.org/10.1007/s10705-016-9789-7
  • Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C.I., & Therios, I. (2011). Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. Plant Growth Regulation, 65, 315–325. https://doi.org/10.1007/s10725-011-9604-z
  • Nikolaeva, K., Maevskaya, N., Shugaev, G., & Bukhov, G. (2010). Effect of Drought on Chlorophyll Content and Antioxidant Enzyme Activities in Leaves of Three Wheat Cultivars Varying in Productivity. Russian Journal of Plant Physiology, 57, 87–95. https://doi.org/10.1134/S1021443710010127
  • Özturk, L., & Demir, Y. (2002). In vivo and in vitro protective role of proline. Plant Growth Regulation, 38, 259-264. https://doi.org/10.1023/A:1021579713832
  • Özüdoğru, T. (2019). Agrıcultural Products Report: Cotton. Institute of agricultural economics and policy development, pages 1-4.
  • Parida, K., Dagaonkar, S., Phalak, S., Umalkar, V., & Aurangabadkar, P. (2007). Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports, 1, 37-48. https://doi.org/10.1007/s11816-006-0004-1
  • Pelleschi, S., Rocher, P., & Prioul, L. (1997). Effect of water restriction on carbonhydrate metabolism and photosynthesis in mature maize leaves. Plant Cell and Environment, 20, 493-503. https://doi.org/10.1046/j.1365-3040.1997.d01-89.x
  • Pettigrew, W.T., Molin, W.T., & Stetina, S.R. (2009). Impact of varying planting dates and tillage systems on cotton growth and lint yield production. Agron. J. 101, 1131-1138. https://doi.org/10.2134/agronj2009.0073
  • Peynircioğlu, C. (2014). Kuraklik stresine dayanikli pamuk (Gossypium hirsutum L.) çeşit islahinda kullanilacak pamuk genotiplerinin belirlenmesi (Yüksek lisans tezi). Adnan Menderes Üniversitesi, Aydın, Türkiye.
  • Rahman, H., Malik, S.A., & Saleem, M. (2004). Heat Tolerance of Upland Cotton During the Fruiting Stage Evaluated Using Cellular Membrane Thermostability. Field Crops Research, 85,149–158. https://doi.org/10.1016/S0378- 4290(03)00159-X
  • Reddy, R., Kakani, G., Zhao, D., Koti S., & Gao, W. (2004). Interactive Effects of Ultraviolet-B Radiation and Temperature on Cotton Physiology, Growth, Development and Hyperspectral Reflectance. Photochemistry and Photobiology, 79, 416–427. https://doi.org/10.1111/j.1751-1097.2004.tb00029.x
  • Rhodes, D., & Hanson A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 357–384. https://doi.org/10.1146/annurev.pp.44.060193.002041
  • Salvucci, E., & Crafts-Brandner, J. (2004). Inhibition of Photosynthesis by Heat Stress: The Activation State of Rubisco as a Limiting Factor in Photosynthesis. Physiologia Plantarum, 120,179–186. https://doi.org/10.1111/j.0031-9317.2004.0173.x
  • Samarah, N., Mullen, R., & Cianzio, S. (2004). Size distribution and mineral nutrients of soybean seeds in response to drought stress. Journal of Plant Nutrition, 27, 815–835. https://doi.org/10.1081/PLN-120030673
  • Sánchez, J., De Andrés, F., Tenorio, L., & Ayerbe, L. (2004). Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research, 86, 81–90. https://doi.org/10.1016/S0378-4290(03)00121-7
  • Serraj, R., & Sinclair, T.R. (2000). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25,333–341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  • Shafaqat, A., Shengguan, C., Fanrong Z., Boyin, Q., & Guoping, Z. (2012). Effect Of Salınıty And Hexavalent Chromıum Stresses On Uptake And Accumulatıon Of Mıneral Elements In Barley Genotypes Dıfferıng In Salt Tolerance. Journal of Plant Nutrion, 35, 827–839. https://doi.org/10.1080/01904167.2012.663438
  • Soil Survey Laboratory Methods Manual. (2004). Soil Survey Investigation Report United States Department of Agriculture Natural Resources Conservation Sevice No:42. Version 4.0 November.
  • Srinivas, V., & Balasubramanian, D. (1995). Proline is a protein-compatible hydrotrope. Langmuir , 11: 2830–2833. https://doi.org/10.1021/la00007a077
  • Taş, İ., & Kırnak H. (2011). Drip irrigation method of Sanliurfa Pepper irrigated (Capsicum annum L.) Irrigation Program. Gaziosmanpaşa University Journal of agricultural , 28(1), 103-112.
  • Thimmanaik, S., Kumar, G., Kumari, J., Suryanarayana, N., & Sudhakar, C. (2002). Photosynthesis and the enzymes of photosynthetic carbon reduction cycle in mulbery during water stres and recovery. Photosynthetica, 40, 233-236.
  • Ullah, I.R. (2008). Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): Leaf gas exchange and productivity. Flora, 203: 105–115. https://doi.org/10.1016/j.flora.2007.12.001
  • USDA, (2019). Cotton World Markets and Trade, World Production, Markets and Trade Reports, https://www.fas.usda.gov/data_analysis/scheduled-reports-2019.
  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids, 35, 753–759.
  • Wu, J., Wang, Y., & Zhu, C. (2011). Overexpression of a cotton cyclophilin gene in transgenic tobacco plants confer dual tolerance to salt stres and Pseudomanas syringae pv. tabacci infection. Plant Physiology, 12, 79-61. https://doi.org/10.1016/j.plaphy.2011.09.001
  • Zali, G.A., & Ehsanzadeh, P. (2018). Exogenous proline improves osmoregulation, physiological functions,essential oil, and seed yield of fennel. Industrial Crops & Products, 111,133-140.https://doi.org/10.1016/j.indcrop.2017.10.020
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Nimet Kılınçoğlu 0000-0001-7935-9216

Cevher İlhan Cevheri 0000-0002-7070-2652

Cenap Cevheri 0000-0002-3759-4645

Hatice Yüsra Nahya 0000-0003-2228-5118

Project Number 18162
Publication Date December 31, 2020
Submission Date August 20, 2020
Acceptance Date November 2, 2020
Published in Issue Year 2020

Cite

APA Kılınçoğlu, N., Cevheri, C. İ., Cevheri, C., Nahya, H. Y. (2020). Kuraklık Stresi Altındaki Pamuk Bitkisine (Gossypium hirsutum L.) Dışsal Prolin Uygulamasının Bazı Fizyolojik Parametreler Üzerindeki Etkisi. Commagene Journal of Biology, 4(2), 126-133. https://doi.org/10.31594/commagene.783027
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.