Research Article
BibTex RIS Cite

Sıçanların Epididimis ve Dalak Dokularında Kurşun ve Kadmiyuma Bağlı Oksidatif Strese Karşı Sesamolün Etkileri

Year 2021, , 7 - 11, 30.06.2021
https://doi.org/10.31594/commagene.797945

Abstract

Kurşun ve kadmiyum, hayvan ve insan sağlığına zarar veren gıda ve su kirleticilerinde yaygın olarak bulunan bilinen çevre kirleticileridir. Sesamol, bazı bitkilerde bulunan bir diyet antioksidanıdır. Epididimisin spermin olgunlaşması ve depolanmasında önemli bir rol oynadığı bilinmektedir. Dalak, bağışıklık tepkisinde rol oynayan önemli bir organdır. Bu çalışma, dalak ve epididimdeki oksidatif stresi analiz etmeyi amaçlamaktadır. Bu amaçla sıçanlara kurşun (günde 90 mg/kg canlı ağırlık, 1/25 LD50), kadmiyum (günde 3 mg/kg canlı ağırlık, 1/25 LD50) ve sesamol (günde 50 mg/kg canlı ağırlık) verildi. 28 gün boyunca gavaj, 28 gün sonunda epididimis ve dalak dokularındaki antioksidan enzim aktiviteleri [süperoksit dismutaz (SOD), katalaz (CAT), glutasyon peroksidaz (GPx) ve glutatyon S transferaz], malondialdehit (MDA) kontrol grubu ile karşılaştırmalı olarak araştırıldı. Kontrol grubuna göre kurşun ve kadmiyum uygulanan sıçanların dalak ve epididimis dokularında antioksidan enzimlerinde istatistiksel olarak anlamlı bir azalma ve MDA düzeylerinde artış olmuştur. Bu parametrelerde sesamol ile tedavi edilen gruplarda daha az artış gözlenmiştir.

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Agarwal, R., Goel, S.K., Chandra, R., & Behari, R.J. (2010). Role of vitamin E in preventing acute mercury toxicity in rat. Environmental Toxicology and Pharmacology, 29, 70–78. https://doi.org/10.1016/j.etap.2009.10.003
  • Apaydın, F. G., Bas, H., Kalender, S., & Kalender, Y. (2016). Subacute effects of low dose lead nitrate and mercury chloride exposure on kidney of rats. Environmental Toxicology and Pharmacology, 41, 219-224. https://doi.org/10.1016/j.etap.2015.12.003
  • Apaydin, F.G., Kalender, S., Bas, H., Demir, F., & Kalender, Y. (2015). Lead nitrate induced testicular toxicity in diabetic and non-diabetic rats: protective role of sodium selenite. Brazilian Archives of Biology and Technology, 58 (1), 68-74. https://doi.org/10.1590/S1516-8913201400025
  • Baş, H., & Kalender, Y. (2016). Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: Involvement of oxidative stress and the protective role of sodium selenite. Environmental Toxicology, 31(10), 1229-1240. https://doi.org/10.1002/tox.22130
  • Baş, H., Kalender, S., Karaboduk, H., & Apaydın, F. G. (2015a). The effects on antioxidant enzyme systems in rat brain tissues of lead nitrate and mercury chloride. Gazi University Journal of Science, 28(2), 169-174.
  • Baş, H., Kalender, Y., Pandir, D., & Kalender, S. (2015b). Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes. Environmental Toxicology and Pharmacology, 39 (3), 1019-1026. https://doi.org/10.1016/j.etap.2015.03.012
  • Chu, P., Chien, S., Hsu, D., & Liu, M. (2010). Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats. Food and Chemical Toxicology, 48, 1821–1826. https://doi.org/10.1016/j.fct.2010.04.014
  • Djuric, A., Begic, A., Gobeljic, B., Stanojevic, I., Ninkovic, M., Vojvodic, D., … Djukic, M. (2015). Oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food and Chemical Toxicology, 86, 25–33. https://doi.org/10.1016/j.fct.2015.09.004
  • El-Demerdash, F.M., Yousef, M.I., Kedwany, F.S., & Baghdadi, H.H. (2004). Cadmium induced changes in lipid peroxidation, blood hematology, biocheemalatical parameters and semen quality of male rats: protective role of vitamin E and b-carotene. Food and Chemical Toxicology, 42, 1563-1571. https://doi.org/10.1016/j.fct.2004.05.001
  • Fang, X., Feng, Y., Wang, J., & Dai, J. (2010). Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway. Toxicology, 267, 54-59. https://doi.org/10.1016/j.tox.2009.10.020
  • Garcia-Nino, W.R., & Pedraza-Chaverri, J. (2014). Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69, 182-201. https://doi.org/10.1016/j.fct.2014.04.016
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94, 651–715. https://doi.org/10.1007/s00204-020-02689-3
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130-7139.
  • Hemalatha, G., Pugalendi, K.V., & Saravanan, R. (2013). Modulatory effect of sesamol on DOCA-salt-induced oxidative stress in uninephrectomized hypertensive rats. Molecular and Cell Biochemistry, 379, 255–265. https://doi.org/10.1007/s11010-013-1647-1
  • Hsu, D., Wan, C., Hsu, H., Lin, Y., & Liu, M. (2008). The prophylactic protective effect of sesamol against ferric–nitrilotriacetate-induced acute renal injury in mice. Food and Chemical Toxicology, 46, 2736–2741. https://doi.org/10.1016/j.fct.2008.04.029
  • Kalender, S., Apaydın, F. G., Baş, H., & Kalender, Y. (2015). Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats. Environmental Toxicology and Pharmacology, 40, 568-574. https://doi.org/10.1016/j.etap.2015.08.011
  • Latchoumycandane, C., Chitra, K.C., & Mathur, P.P. (2003). 2,3,7,8-Tetrachlorodibenzo-p -dioxin (TCDD) induces oxidative stress in the epididymis and epididymal sperm of adult rats. Achieves of Toxicology, 77, 280-284.
  • Ma, H., Wang, J., Abdel-Rahman, S., Boor, P.J., & Khan, M.F. (2008). Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline. Toxicology and Applied Pharmacology, 233, 247–253. https://doi.org/10.1016/j.taap.2008.08.010
  • Marchlewicz, M., Michalska, T., & Wiszniewska, B. (2004). Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence. Chemosphere, 57, 1553-1562. https://doi.org/10.1016/j.chemosphere.2004.08.102
  • Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  • Merra, E., Calzaretti, G., Bobba, A., Storelli, M.M., & Casalino, E. (2014). Antioxidant role of hydroxytyrosol on oxidative stress in cadmium-intoxicated rats: different effect in spleen and testes. Drug and Chemical Toxicology, 37, 420-426. https://doi.org/10.3109/01480545.2013.878950
  • Neogy, S., Das, S., Mahapatra, S.K., Mandal, N., & Roy, S. (2008). Amelioratory effect of Andrographis paniculata Nees on liver, kidney, heart, lung and spleen during nicotine induced oxidative stress. Environmental Toxicology and Pharmacology, 25, 321-328. https://doi.org/10.1016/j.etap.2007.10.034
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Paglia, D.E., & Valentine, W.N. (1987). Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal Laboratory Medicine, 70, 158-165.
  • Parihar, V.K., Prabhakar, K.R., Veerapur, V.P., Kumar, M.S., Reddy, Y.R., Joshi, R., … Rao, C.M., (2006). Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutation Research, 611, 9–16. https://doi.org/10.1016/j.mrgentox.2006.06.037
  • Plastunov, B., & Zub, S. (2008). Lipid peroxidation processes and antioxidant defense under lead intoxication and iodine-deficient in experiment. Anales Universitatis Mariae Curie Sklodowska Lublin-polonia, 21, 215-217.
  • Sharma, V., Sharma, A., & Kansal, L. (2010). The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food and Chemical Toxicology, 48, 928-936. https://doi.org/10.1016/j.fct.2010.01.002
  • Tunali, S., & Yanardag, R. (2006). Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacological Research 53, 271–277. https://doi.org/10.1016/j.phrs.2005.12.004
  • Uzunhisarcikli, M., Aslantürk, A., Kalender, S., Apaydın, F.G., & Baş, H. (2016). Mercuric chloride induced hepatotoxic and hematologic changes in rats: The protective effects of sodium selenite and vitamin E. Toxicology and Industrial Health, 32, 1651-1662. https://doi.org/10.1177/0748233715572561
  • Zhou, D., Wang, H., & Zhang, J. (2011). Di-n-butyl phthalate (DBP) exposure induces oxidative stress in epididymis of adult rats. Toxicology and Industrial Health, 27 (1), 65-71. https://doi.org/10.1177/0748233710381895

Lead and Cadmium Induced Oxidative Stress in the Epididymis and Spleen of Rats: Effects of Sesamol

Year 2021, , 7 - 11, 30.06.2021
https://doi.org/10.31594/commagene.797945

Abstract

Lead and cadmium are known as environmental pollutants extensively found in food and water that induce hazards to animals’ and people’s health. Sesamol is a dietary antioxidant that is found in some plants. Epididymis is known to play an important role in the maturation and storage of the sperm. The spleen is an important organ involved in the immune response. The present study aims to analyze the oxidative stress in spleen and epididymis. Therefore, Lead (LN) (90 mg/kg bw per day, 1/25 LD50), Cadmium (CdCl2) (3 mg/kg bw per day, 1/25 LD50), and sesamol (50 mg/kg bw per day) were given to rats by gavage for 28 days. Antioxidant enzyme activities in epididymis and spleen tissues [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S transferase], malondialdehyde (MDA) were investigated at the end of 28 days comparatively with the control group. It is revealed that there is a significant decline in the antioxidant enzymes and increase in MDA levels in the spleen and epididymis tissues of the lead and cadmium treated rats compared to the control group. A small increase in these parameters was also observed in the sesamol treated groups.

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  • Agarwal, R., Goel, S.K., Chandra, R., & Behari, R.J. (2010). Role of vitamin E in preventing acute mercury toxicity in rat. Environmental Toxicology and Pharmacology, 29, 70–78. https://doi.org/10.1016/j.etap.2009.10.003
  • Apaydın, F. G., Bas, H., Kalender, S., & Kalender, Y. (2016). Subacute effects of low dose lead nitrate and mercury chloride exposure on kidney of rats. Environmental Toxicology and Pharmacology, 41, 219-224. https://doi.org/10.1016/j.etap.2015.12.003
  • Apaydin, F.G., Kalender, S., Bas, H., Demir, F., & Kalender, Y. (2015). Lead nitrate induced testicular toxicity in diabetic and non-diabetic rats: protective role of sodium selenite. Brazilian Archives of Biology and Technology, 58 (1), 68-74. https://doi.org/10.1590/S1516-8913201400025
  • Baş, H., & Kalender, Y. (2016). Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: Involvement of oxidative stress and the protective role of sodium selenite. Environmental Toxicology, 31(10), 1229-1240. https://doi.org/10.1002/tox.22130
  • Baş, H., Kalender, S., Karaboduk, H., & Apaydın, F. G. (2015a). The effects on antioxidant enzyme systems in rat brain tissues of lead nitrate and mercury chloride. Gazi University Journal of Science, 28(2), 169-174.
  • Baş, H., Kalender, Y., Pandir, D., & Kalender, S. (2015b). Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes. Environmental Toxicology and Pharmacology, 39 (3), 1019-1026. https://doi.org/10.1016/j.etap.2015.03.012
  • Chu, P., Chien, S., Hsu, D., & Liu, M. (2010). Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats. Food and Chemical Toxicology, 48, 1821–1826. https://doi.org/10.1016/j.fct.2010.04.014
  • Djuric, A., Begic, A., Gobeljic, B., Stanojevic, I., Ninkovic, M., Vojvodic, D., … Djukic, M. (2015). Oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food and Chemical Toxicology, 86, 25–33. https://doi.org/10.1016/j.fct.2015.09.004
  • El-Demerdash, F.M., Yousef, M.I., Kedwany, F.S., & Baghdadi, H.H. (2004). Cadmium induced changes in lipid peroxidation, blood hematology, biocheemalatical parameters and semen quality of male rats: protective role of vitamin E and b-carotene. Food and Chemical Toxicology, 42, 1563-1571. https://doi.org/10.1016/j.fct.2004.05.001
  • Fang, X., Feng, Y., Wang, J., & Dai, J. (2010). Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway. Toxicology, 267, 54-59. https://doi.org/10.1016/j.tox.2009.10.020
  • Garcia-Nino, W.R., & Pedraza-Chaverri, J. (2014). Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69, 182-201. https://doi.org/10.1016/j.fct.2014.04.016
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94, 651–715. https://doi.org/10.1007/s00204-020-02689-3
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249, 7130-7139.
  • Hemalatha, G., Pugalendi, K.V., & Saravanan, R. (2013). Modulatory effect of sesamol on DOCA-salt-induced oxidative stress in uninephrectomized hypertensive rats. Molecular and Cell Biochemistry, 379, 255–265. https://doi.org/10.1007/s11010-013-1647-1
  • Hsu, D., Wan, C., Hsu, H., Lin, Y., & Liu, M. (2008). The prophylactic protective effect of sesamol against ferric–nitrilotriacetate-induced acute renal injury in mice. Food and Chemical Toxicology, 46, 2736–2741. https://doi.org/10.1016/j.fct.2008.04.029
  • Kalender, S., Apaydın, F. G., Baş, H., & Kalender, Y. (2015). Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats. Environmental Toxicology and Pharmacology, 40, 568-574. https://doi.org/10.1016/j.etap.2015.08.011
  • Latchoumycandane, C., Chitra, K.C., & Mathur, P.P. (2003). 2,3,7,8-Tetrachlorodibenzo-p -dioxin (TCDD) induces oxidative stress in the epididymis and epididymal sperm of adult rats. Achieves of Toxicology, 77, 280-284.
  • Ma, H., Wang, J., Abdel-Rahman, S., Boor, P.J., & Khan, M.F. (2008). Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline. Toxicology and Applied Pharmacology, 233, 247–253. https://doi.org/10.1016/j.taap.2008.08.010
  • Marchlewicz, M., Michalska, T., & Wiszniewska, B. (2004). Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence. Chemosphere, 57, 1553-1562. https://doi.org/10.1016/j.chemosphere.2004.08.102
  • Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  • Merra, E., Calzaretti, G., Bobba, A., Storelli, M.M., & Casalino, E. (2014). Antioxidant role of hydroxytyrosol on oxidative stress in cadmium-intoxicated rats: different effect in spleen and testes. Drug and Chemical Toxicology, 37, 420-426. https://doi.org/10.3109/01480545.2013.878950
  • Neogy, S., Das, S., Mahapatra, S.K., Mandal, N., & Roy, S. (2008). Amelioratory effect of Andrographis paniculata Nees on liver, kidney, heart, lung and spleen during nicotine induced oxidative stress. Environmental Toxicology and Pharmacology, 25, 321-328. https://doi.org/10.1016/j.etap.2007.10.034
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.
  • Paglia, D.E., & Valentine, W.N. (1987). Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal Laboratory Medicine, 70, 158-165.
  • Parihar, V.K., Prabhakar, K.R., Veerapur, V.P., Kumar, M.S., Reddy, Y.R., Joshi, R., … Rao, C.M., (2006). Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutation Research, 611, 9–16. https://doi.org/10.1016/j.mrgentox.2006.06.037
  • Plastunov, B., & Zub, S. (2008). Lipid peroxidation processes and antioxidant defense under lead intoxication and iodine-deficient in experiment. Anales Universitatis Mariae Curie Sklodowska Lublin-polonia, 21, 215-217.
  • Sharma, V., Sharma, A., & Kansal, L. (2010). The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food and Chemical Toxicology, 48, 928-936. https://doi.org/10.1016/j.fct.2010.01.002
  • Tunali, S., & Yanardag, R. (2006). Effect of vanadyl sulfate on the status of lipid parameters and on stomach and spleen tissues of streptozotocin-induced diabetic rats. Pharmacological Research 53, 271–277. https://doi.org/10.1016/j.phrs.2005.12.004
  • Uzunhisarcikli, M., Aslantürk, A., Kalender, S., Apaydın, F.G., & Baş, H. (2016). Mercuric chloride induced hepatotoxic and hematologic changes in rats: The protective effects of sodium selenite and vitamin E. Toxicology and Industrial Health, 32, 1651-1662. https://doi.org/10.1177/0748233715572561
  • Zhou, D., Wang, H., & Zhang, J. (2011). Di-n-butyl phthalate (DBP) exposure induces oxidative stress in epididymis of adult rats. Toxicology and Industrial Health, 27 (1), 65-71. https://doi.org/10.1177/0748233710381895
There are 31 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Fatma Apaydın 0000-0002-2771-7488

Hatice Baş 0000-0001-8296-0360

Yusuf Kalender 0000-0001-5457-0517

Publication Date June 30, 2021
Submission Date September 21, 2020
Acceptance Date January 18, 2021
Published in Issue Year 2021

Cite

APA Apaydın, F., Baş, H., & Kalender, Y. (2021). Lead and Cadmium Induced Oxidative Stress in the Epididymis and Spleen of Rats: Effects of Sesamol. Commagene Journal of Biology, 5(1), 7-11. https://doi.org/10.31594/commagene.797945
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.