Research Article
BibTex RIS Cite

Lipid Production by Yarrowia lipolytica B9 Using Crude Glycerol as Carbon Source

Year 2021, , 126 - 130, 31.12.2021
https://doi.org/10.31594/commagene.895886

Abstract

The present study was carried out to optimize some culture conditions to increase lipid production from Yarrowia lipolytica B9 in crude glycerol-based medium. The experiments displayed that too high concentrations of ammonium sulfate, KH2PO4, and MgSO4 increased cell growth but inhibited lipid synthesis. In contrast, more synthesis of lipids was determined to be achived at high concentrations of NaCl. The optimum concentrations of glycerol, ammonium sulfate, KH2PO4, MgSO4, and NaCl for lipid synthesis were determined as 50, 3, 1.5, 1 and 5 g/L, respectively. The optimal incubation time for lipid synthesis was found to be 6 days. Lipid concentration of 2.69 g/L and lipid content of 60.1%, were reached under optimal culture conditions.

References

  • Abghari, A., & Chen, S. (2017). Engineering Yarrowia lipolytica for enhanced production of lipid and citric acid. Fermentation, 3(3), 34. https://doi.org/10.3390/fermentation3030034
  • Altun, R., Esim, N., Aykutoglu, G., Baltaci, M.O., Adiguzel, A., & Taskin, M. (2020). Production of linoleic acid‐rich lipids in molasses‐based medium by oleaginous fungus Galactomyces geotrichum TS61. Journal of Food Processing and Preservation, 44(7), e14518. https://doi.org/10.1111/jfpp.14518
  • Amaretti, A., Raimondi, S., Sala, M., Roncaglia, L., De Lucia, M., Leonardi, A., & Rossi, M. (2010). Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microbial cell factories, 9(1), 1-6. https://doi.org/10.1186/1475-2859-9-73
  • Anand, P., & Saxena, R.K. (2011). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundi. New Biotechnology, 00, 1-7. https://doi.org/10.1016/j.nbt.2011.05.010
  • André, A., Chatzifragkou, A., Diamantopoulou, P., Sarris, D., Philippoussis, A., Galiotou‐Panayotou, M., ... & Papanikolaou, S. (2009). Biotechnological conversions of bio‐diesel‐derived crude glycerol by Yarrowia lipolytica strains. Engineering in Life Sciences, 9(6), 468-478. https://doi.org/10.1002/elsc.200900063
  • Bandhu, S., Dasgupta, D., Akhter, J., Kanaujia, P., Suman, S.K., Agrawal, D., ... & Ghosh, D. (2014). Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology. SpringerPlus, 3(1), 1-11. https://doi.org/10.1186/2193-1801-3-691
  • Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.L., Molina-Jouve, C., & Nicaud, J.M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in lipid research, 48(6), 375-387. https://doi.org/10.1016/j.plipres.2009.08.005
  • Chen, Y.H., & Walker, T.H. (2011). Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 33, 1973–1983. https://doi.org/10.1007/s10529-011-0672-y
  • Dobrowolski, A., Drzymała, K., Rzechonek, D.A., Mituła, P., & Mirończuk, A.M. (2019). Lipid production from waste materials in seawater-based medium by the yeast Yarrowia lipolytica. Frontiers in Microbiology, 10, 547. https://doi.org/10.3389/fmicb.2019.00547
  • Elfeky, N., Elmahmoudy, M., Zhang, Y., Guo, J., & Bao, Y. (2019). Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Applied Sciences, 9(12), 2444. https://doi.org/10.3390/app9122444
  • Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina, Biomass and Bioenergy, 33, 573–580. https://doi.org/10.1016/j.biombioe.2008.09.006
  • Gao, Z., Ma, Y., Wang, Q., Zhang, M., Wang, J., & Liu, Y. (2016). Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresource technology, 218, 373-379. https://doi.org/10.1016/j.biortech.2016.06.088
  • Gao, R., Li, Z., Zhou, X., Cheng, S., & Zheng, L. (2017). Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production. Biotechnology for biofuels, 10(1), 1-15. https://doi.org/10.1186/s13068-017-0942-6
  • Gajdoš, P., Nicaud, J.M., & Čertík, M. (2017). Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Engineering in Life Sciences, 17(3), 325-332. https://dx.doi.org/10.1002%2Felsc.201600065
  • González-García, Y., Rábago-Panduro, L.M., French, T., Camacho-Córdova, D.I., Gutiérrez-González, P., & Córdova, J. (2017). High lipids accumulation in Rhodosporidium toruloides by applying single and multiple nutrients limitation in a simple chemically defined medium. Annals of Microbiology, 67(8), 519-527. https://doi.org/10.1007/s13213-017-1282-2
  • Guo, Y., Xie, S., Yuan, J.S., & Kao, K.C. (2019). Effects of seawater on carotenoid production and lipid content of engineered Saccharomyces cerevisiae. Fermentation, 5(1), 6. https://doi.org/10.3390/fermentation5010006
  • Karatay, S.E., & Dönmez, G. (2010). Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technology, 101(20), 7988-7990. https://doi.org/10.1016/j.biortech.2010.05.054
  • Kumar, L.R., Yellapu, S.K., Tyagi, R.D., & Drogui, P. (2020). Purified crude glycerol by acid treatment allows to improve lipid productivity by Yarrowia lipolytica SKY7. Process Biochemistry, 96, 165-173. https://doi.org/10.1016/j.procbio.2020.06.010
  • Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable energy, 34(1), 1-5. https://doi.org/10.1016/B978-0-12-816856-1.00027-0
  • Niehus, X., Casas-Godoy, L., Rodríguez-Valadez, F.J., & Sandoval, G. (2018). Evaluation of Yarrowia lipolytica oil for biodiesel production: land use oil yield, carbon, and energy balance. Journal of Lipids. https://doi.org/10.1155/2018/6393749
  • Ortucu, S., Yazici, A., Taskin, M., & Cebi, K. (2017). Evaluation of waste loquat kernels as substrate for lipid production by Rhodotorula glutinis SO28. Waste and biomass valorization, 8(3), 803-810. https://doi.org/10.1007/s12649-016-9615-0
  • Papanikolaou, S., & Aggelis, G. (2010). Yarrowia lipolytica: A model microorganism used for the production of tailor‐made lipids. European Journal of Lipid Science and Technology, 112(6), 639-654. https://doi.org/10.1002/ejlt.200900197
  • Papanikolaou, S., Galiotou‐Panayotou, M., Fakas, S., Komaitis, M., & Aggelis, G. (2007). Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 109(11), 1060-1070. https://doi.org/10.1002/ejlt.200700169
  • Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., & Nicaud, J.M. (2015). Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnology for Biofuels, 8(1), 1-10. https://dx.doi.org/10.1186%2Fs13068-015-0286-z
  • Radha, P., Narayanan, S., Chaudhuri, A., Anjum, S., Thomas, D.L., Pandey, R., & Ramani, K. (2020). Synthesis of single-cell oil by Yarrowia lipolytica MTCC 9520 utilizing slaughterhouse lipid waste for biodiesel production. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-020-01132-y
  • Sara, M., Brar, S.K., & Blais, J.F. (2016). Lipid production by Yarrowia lipolytica grown on biodiesel-derived crude glycerol: optimization of growth parameters and their effects on the fermentation efficiency. RSC advances, 6(93), 90547-90558. https://doi.org/10.1039/C6RA16382C
  • Santek, M.I., Beluhan, S., & Santek, B. (2018). Production of microbial lipids from lignocellulosic biomass. In Advances in Biofuels Bioenergy, Edited by Nageswara-Rao, M & Soneji, J; InTechOpen: London, UK. http://dx.doi.org/10.5772/intechopen.74013
  • Sriwongchai, S., Pokethitiyook, P., Kruatrachue, M., Bajwa, P.K., & Lee, H. (2013). Screening of selected oleaginous yeasts for lipid production from glycerol and some factors which affect lipid production by Yarrowia lipolytica strains. Journal of Microbiology, Biotechnology and Food Sciences, 2, 2344-2348.
  • Swiatkiewicz, S., & Koreleski, J. (2009). Effect of crude glycerin level in the diet of laying hens on egg performance and nutrient utilization. Poultry Science, 88, 615-619. https://doi.org/10.3382/ps.2008-00303
  • Taskin, M., Saghafian, A., Aydogan, M.N., & Arslan, N.P. (2015). Microbial lipid production by cold‐adapted oleaginous yeast Yarrowia lipolytica B9 in non‐sterile whey medium. Biofuels, Bioproducts and Biorefining, 9(5), 595-605. https://doi.org/10.1002/bbb.1560
  • Taskin, M., Ortucu, S., Aydogan, M.N., & Arslan, N.P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy, 99, 198-204. https://doi.org/10.1016/j.renene.2016.06.060
  • Tasselli, G., Filippucci, S., Borsella, E., D’Antonio, S., Gelosia, M., Cavalaglio, G., ... & Buzzini, P. (2018). Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals. Biotechnology for Biofuels, 11(1), 1-16. https://doi.org/10.1186/s13068-018-1142-8
  • Tchakouteu, S.S., Kopsahelis, N., Chatzifragkou, A., Kalantzi, O., Stoforos, N.G., Koutinas, A.A., ... & Papanikolaou, S. (2017). Rhodosporidium toruloides cultivated in NaCl‐enriched glucose‐based media: Adaptation dynamics and lipid production. Engineering in Life Sciences, 17(3), 237-248. https://doi.org/10.1002/elsc.201500125
  • Uprety, B.K., Dalli, S.S., & Rakshit, S.K. (2017). Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Conversion and Management, 135, 117-128. https://doi.org/10.1016/j.enconman.2016.12.071
  • Wang, Y., Zhang, S., Zhu, Z., Shen, H., Lin, X., Jin, X., ... & Zhao, Z.K. (2018). Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides. Biotechnology for Biofuels, 11(1), 1-15.
  • Yang, F., Hanna, M.A., & Sun, R. (2012). Value-added uses for curde glycerol-a by product of biodiesel production. Biotechnology for Biofuels, 5, 13.
  • Zhang, S., Jagtap, S.S., Deewan, A., & Rao, C.V. (2019). pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. Journal of Biotechnology, 290, 10-15. https://doi.org/10.1016/j.jbiotec.2018.10.012

Karbon Kaynağı Olarak Ham Gliserolü Kullanarak Yarrowia lipolytica B9 ile Lipit Üretimi

Year 2021, , 126 - 130, 31.12.2021
https://doi.org/10.31594/commagene.895886

Abstract

Mevcut çalışma, ham gliserol bazlı besiyerinde Yarrowia lipolytica B9’dan lipit üretimini artırmak için bazı kültür koşullarını optimize etmek amacıyla gerçekleştirilmiştir. İnceleme sonucunda amonyum sülfat, KH2PO4 ve MgSO4’ün çok yüksek konsantrasyonlarının hücre büyümesini artırdığı fakat lipit sentezini inhibe ettiği gözlemlendi. Buna ek olarak, daha fazla lipit sentezinin yüksek NaCl konsantrasyonlarında başarıldığı ortaya çıktı. Lipit sentezi için gliserol, amonyum sülfat, KH2PO4, MgSO4 ve NaCl’nin optimum konsantrasyonları sırasıyla 50; 3; 1,5; 1 ve 5 gr/lt olarak belirlendi. Lipid sentezi için optimal inkübasyon süresinin 6 gün olduğu bulundu. Optimal kültür koşullarında 2.69 gr/lt lipit konsantrasyonuna ve %60.1 lipit içeriğine ulaşıldı.

References

  • Abghari, A., & Chen, S. (2017). Engineering Yarrowia lipolytica for enhanced production of lipid and citric acid. Fermentation, 3(3), 34. https://doi.org/10.3390/fermentation3030034
  • Altun, R., Esim, N., Aykutoglu, G., Baltaci, M.O., Adiguzel, A., & Taskin, M. (2020). Production of linoleic acid‐rich lipids in molasses‐based medium by oleaginous fungus Galactomyces geotrichum TS61. Journal of Food Processing and Preservation, 44(7), e14518. https://doi.org/10.1111/jfpp.14518
  • Amaretti, A., Raimondi, S., Sala, M., Roncaglia, L., De Lucia, M., Leonardi, A., & Rossi, M. (2010). Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microbial cell factories, 9(1), 1-6. https://doi.org/10.1186/1475-2859-9-73
  • Anand, P., & Saxena, R.K. (2011). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundi. New Biotechnology, 00, 1-7. https://doi.org/10.1016/j.nbt.2011.05.010
  • André, A., Chatzifragkou, A., Diamantopoulou, P., Sarris, D., Philippoussis, A., Galiotou‐Panayotou, M., ... & Papanikolaou, S. (2009). Biotechnological conversions of bio‐diesel‐derived crude glycerol by Yarrowia lipolytica strains. Engineering in Life Sciences, 9(6), 468-478. https://doi.org/10.1002/elsc.200900063
  • Bandhu, S., Dasgupta, D., Akhter, J., Kanaujia, P., Suman, S.K., Agrawal, D., ... & Ghosh, D. (2014). Statistical design and optimization of single cell oil production from sugarcane bagasse hydrolysate by an oleaginous yeast Rhodotorula sp. IIP-33 using response surface methodology. SpringerPlus, 3(1), 1-11. https://doi.org/10.1186/2193-1801-3-691
  • Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.L., Molina-Jouve, C., & Nicaud, J.M. (2009). Yarrowia lipolytica as a model for bio-oil production. Progress in lipid research, 48(6), 375-387. https://doi.org/10.1016/j.plipres.2009.08.005
  • Chen, Y.H., & Walker, T.H. (2011). Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 33, 1973–1983. https://doi.org/10.1007/s10529-011-0672-y
  • Dobrowolski, A., Drzymała, K., Rzechonek, D.A., Mituła, P., & Mirończuk, A.M. (2019). Lipid production from waste materials in seawater-based medium by the yeast Yarrowia lipolytica. Frontiers in Microbiology, 10, 547. https://doi.org/10.3389/fmicb.2019.00547
  • Elfeky, N., Elmahmoudy, M., Zhang, Y., Guo, J., & Bao, Y. (2019). Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Applied Sciences, 9(12), 2444. https://doi.org/10.3390/app9122444
  • Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina, Biomass and Bioenergy, 33, 573–580. https://doi.org/10.1016/j.biombioe.2008.09.006
  • Gao, Z., Ma, Y., Wang, Q., Zhang, M., Wang, J., & Liu, Y. (2016). Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresource technology, 218, 373-379. https://doi.org/10.1016/j.biortech.2016.06.088
  • Gao, R., Li, Z., Zhou, X., Cheng, S., & Zheng, L. (2017). Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production. Biotechnology for biofuels, 10(1), 1-15. https://doi.org/10.1186/s13068-017-0942-6
  • Gajdoš, P., Nicaud, J.M., & Čertík, M. (2017). Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Engineering in Life Sciences, 17(3), 325-332. https://dx.doi.org/10.1002%2Felsc.201600065
  • González-García, Y., Rábago-Panduro, L.M., French, T., Camacho-Córdova, D.I., Gutiérrez-González, P., & Córdova, J. (2017). High lipids accumulation in Rhodosporidium toruloides by applying single and multiple nutrients limitation in a simple chemically defined medium. Annals of Microbiology, 67(8), 519-527. https://doi.org/10.1007/s13213-017-1282-2
  • Guo, Y., Xie, S., Yuan, J.S., & Kao, K.C. (2019). Effects of seawater on carotenoid production and lipid content of engineered Saccharomyces cerevisiae. Fermentation, 5(1), 6. https://doi.org/10.3390/fermentation5010006
  • Karatay, S.E., & Dönmez, G. (2010). Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresource Technology, 101(20), 7988-7990. https://doi.org/10.1016/j.biortech.2010.05.054
  • Kumar, L.R., Yellapu, S.K., Tyagi, R.D., & Drogui, P. (2020). Purified crude glycerol by acid treatment allows to improve lipid productivity by Yarrowia lipolytica SKY7. Process Biochemistry, 96, 165-173. https://doi.org/10.1016/j.procbio.2020.06.010
  • Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable energy, 34(1), 1-5. https://doi.org/10.1016/B978-0-12-816856-1.00027-0
  • Niehus, X., Casas-Godoy, L., Rodríguez-Valadez, F.J., & Sandoval, G. (2018). Evaluation of Yarrowia lipolytica oil for biodiesel production: land use oil yield, carbon, and energy balance. Journal of Lipids. https://doi.org/10.1155/2018/6393749
  • Ortucu, S., Yazici, A., Taskin, M., & Cebi, K. (2017). Evaluation of waste loquat kernels as substrate for lipid production by Rhodotorula glutinis SO28. Waste and biomass valorization, 8(3), 803-810. https://doi.org/10.1007/s12649-016-9615-0
  • Papanikolaou, S., & Aggelis, G. (2010). Yarrowia lipolytica: A model microorganism used for the production of tailor‐made lipids. European Journal of Lipid Science and Technology, 112(6), 639-654. https://doi.org/10.1002/ejlt.200900197
  • Papanikolaou, S., Galiotou‐Panayotou, M., Fakas, S., Komaitis, M., & Aggelis, G. (2007). Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology, 109(11), 1060-1070. https://doi.org/10.1002/ejlt.200700169
  • Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., & Nicaud, J.M. (2015). Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnology for Biofuels, 8(1), 1-10. https://dx.doi.org/10.1186%2Fs13068-015-0286-z
  • Radha, P., Narayanan, S., Chaudhuri, A., Anjum, S., Thomas, D.L., Pandey, R., & Ramani, K. (2020). Synthesis of single-cell oil by Yarrowia lipolytica MTCC 9520 utilizing slaughterhouse lipid waste for biodiesel production. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-020-01132-y
  • Sara, M., Brar, S.K., & Blais, J.F. (2016). Lipid production by Yarrowia lipolytica grown on biodiesel-derived crude glycerol: optimization of growth parameters and their effects on the fermentation efficiency. RSC advances, 6(93), 90547-90558. https://doi.org/10.1039/C6RA16382C
  • Santek, M.I., Beluhan, S., & Santek, B. (2018). Production of microbial lipids from lignocellulosic biomass. In Advances in Biofuels Bioenergy, Edited by Nageswara-Rao, M & Soneji, J; InTechOpen: London, UK. http://dx.doi.org/10.5772/intechopen.74013
  • Sriwongchai, S., Pokethitiyook, P., Kruatrachue, M., Bajwa, P.K., & Lee, H. (2013). Screening of selected oleaginous yeasts for lipid production from glycerol and some factors which affect lipid production by Yarrowia lipolytica strains. Journal of Microbiology, Biotechnology and Food Sciences, 2, 2344-2348.
  • Swiatkiewicz, S., & Koreleski, J. (2009). Effect of crude glycerin level in the diet of laying hens on egg performance and nutrient utilization. Poultry Science, 88, 615-619. https://doi.org/10.3382/ps.2008-00303
  • Taskin, M., Saghafian, A., Aydogan, M.N., & Arslan, N.P. (2015). Microbial lipid production by cold‐adapted oleaginous yeast Yarrowia lipolytica B9 in non‐sterile whey medium. Biofuels, Bioproducts and Biorefining, 9(5), 595-605. https://doi.org/10.1002/bbb.1560
  • Taskin, M., Ortucu, S., Aydogan, M.N., & Arslan, N.P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy, 99, 198-204. https://doi.org/10.1016/j.renene.2016.06.060
  • Tasselli, G., Filippucci, S., Borsella, E., D’Antonio, S., Gelosia, M., Cavalaglio, G., ... & Buzzini, P. (2018). Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals. Biotechnology for Biofuels, 11(1), 1-16. https://doi.org/10.1186/s13068-018-1142-8
  • Tchakouteu, S.S., Kopsahelis, N., Chatzifragkou, A., Kalantzi, O., Stoforos, N.G., Koutinas, A.A., ... & Papanikolaou, S. (2017). Rhodosporidium toruloides cultivated in NaCl‐enriched glucose‐based media: Adaptation dynamics and lipid production. Engineering in Life Sciences, 17(3), 237-248. https://doi.org/10.1002/elsc.201500125
  • Uprety, B.K., Dalli, S.S., & Rakshit, S.K. (2017). Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Conversion and Management, 135, 117-128. https://doi.org/10.1016/j.enconman.2016.12.071
  • Wang, Y., Zhang, S., Zhu, Z., Shen, H., Lin, X., Jin, X., ... & Zhao, Z.K. (2018). Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides. Biotechnology for Biofuels, 11(1), 1-15.
  • Yang, F., Hanna, M.A., & Sun, R. (2012). Value-added uses for curde glycerol-a by product of biodiesel production. Biotechnology for Biofuels, 5, 13.
  • Zhang, S., Jagtap, S.S., Deewan, A., & Rao, C.V. (2019). pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. Journal of Biotechnology, 290, 10-15. https://doi.org/10.1016/j.jbiotec.2018.10.012
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Nazlı Pınar Arslan 0000-0002-3951-4418

Özden Canlı Taşar 0000-0003-2831-8910

Publication Date December 31, 2021
Submission Date March 16, 2021
Acceptance Date August 2, 2021
Published in Issue Year 2021

Cite

APA Arslan, N. P., & Canlı Taşar, Ö. (2021). Lipid Production by Yarrowia lipolytica B9 Using Crude Glycerol as Carbon Source. Commagene Journal of Biology, 5(2), 126-130. https://doi.org/10.31594/commagene.895886
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.