Year 2020, Volume 4 , Issue 1, Pages 67 - 73 2020-06-29

Inulinase production capability of a promising medicinal plant: Inula viscosa
Umut verici bir tıbbi bitkinin inulinaz üretim kapasitesi: Inula viscosa


The present study was designed to examine the inulinase production capability of Rhodotorula glutinis SO-28 by using Inula viscosa, a promising medicinal plant, as sole carbon source in submerged fermentation. Inula viscosa, a perennial member of Asteraceae family, is a popular and widespread medicinal plant in the Mediterranean region. It is termed as “yapışkan andız otu” in Turkey and has been widely used in folk medicine since the ancient times. Taguchi design of experiment (DOE) technique was utilized for the inulinase production optimization process. An orthogonal array layout of L16 was utilized with four influential factors as following: Inula viscosa amount, agitation speed, incubation temperature, and incubation time at four levels. The obtained results showed that optimized inulinase production enhanced enzyme activity as 99.63 U/ml which was 5-fold higher than the unoptimized condition. In brief, Inula viscosa can be used effectively for inulinase production and use of statistical optimization techniques like Taguchi DOE significantly increases the enzyme yield.

Bu çalışma, batık kültür fermantasyonunda tek karbon kaynağı olarak umut verici bir tıbbi bitki olan Inula viscosa kullanılarak Rhodotorula glutinis SO-28'in inulinaz üretim kapasitesini incelemek üzere tasarlanmıştır. Asteraceae familyasının çok yıllık bir üyesi olan Inula viscosa, Akdeniz bölgesinde popüler ve yaygın bir tıbbi bitkidir. Türkiye'de “yapışkan andız otu” olarak adlandırılmakta ve eski çağlardan beri halk tıbbında yaygın olarak kullanılmaktadır. İnülinaz üretim optimizasyonu sürecinde Taguchi deney tasarımı (DOE) tekniği kullanılmıştır. Inula viscosa miktarı, çalkalama hızı, inkübasyon sıcaklığı ve inkübasyon süresi olmak üzere dört etkin faktörlü ve dört seviyeli olan L16 ortogonal dizilim kullanılmıştır. Elde edilen sonuçlar, optimize edilmiş inulinaz üretiminin enzim aktivitesini, optimize edilmemiş durumdan 5 kat daha yüksek olan 99.63 U / ml olarak arttırdığını göstermiştir. Kısacası Inula viscosa, inülinaz üretiminde etkin bir şekilde kullanılabilir ve Taguchi DOE gibi istatistiksel optimizasyon tekniklerinin kullanımı enzim verimini azımsanmayacak ölçüde artırmaktadır.

  • Aissa, I., Nimbarte, V.D., Zardi-Bergaoui, A., Znati, M., Flamini, G., Ascrizzi, R., & Jannet, H.B. (2019). Isocostic Acid, a Promising Bioactive Agent from the Essential Oil of Inula viscosa (L.): Insights from Drug Likeness Properties, Molecular Docking and SAR Analysis. Chemistry Biodiversity, 16(4), e1800648. doi:10.1002/cbdv.201800648
  • Al-Dissi, N.M., Salhab, A.S., & Al-Hajj, A.H. (2001). Effects of Inula viscosa leaf extracts on abortion and implantation in rats. Journal of Ethnopharmacology, 77(1), 117-121.
  • Al-Eisawi, D. (1998). Field Guide to Wild Flowers in Jordan and Neighboring Countries. Jordan Foundation Press, Amman, 97.
  • Al-Qura'n, S. (2009). Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. Journal of Ethnopharmacology, 123, 45-50.
  • Alhaddad, A.Y., Cabibihan, J.J., Hayek, A., & Bonarini, A. (2019). Influence of the shape and mass of a small robot when thrown to a dummy human head. SN Applied Sciences, 1(11). doi:10.1007/s42452-019-1447-7
  • Ali-Shtayeh, M.S., Yaniv, Z. & Mahajna, J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of Ethnopharmacology, 73, 221-232.
  • Alkofahi, A., & Atta, A.H. (1999). Pharmacological screening of the anti-ulserogenic effects of some Jordanian medicinal plants in rats. Journal of Ethnopharmacology, 67, 341-345.
  • Amin, S., Kaloo, Z.A., Singh, S., & Altaf, T. (2013). Medicinal Importance of Genus Inula- A Review. International Journal of Current Research and Review, 05, 20-26.
  • Aydogan, M.N., Taskin, M., Canli, O., Arslan, N.P., & Ortucu, S. (2014). Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61. Folia Microbiologica (Praha), 59(1), 9-16. doi:10.1007/s12223-013-0258-2
  • Bar-Shalom, R., Bergman, M., Grossman, S., Azzam, N., Sharvit, L., & Fares, F. (2019). Inula viscosa Extract Inhibits Growth of Colorectal Cancer Cells in vitro and in vivo Through Induction of Apoptosis. Frontiers in Oncology, 9, 227. doi:10.3389/fonc.2019.00227
  • Barbetti, P., Chiappini, I., Fardella, G., & Menghini, A. (1985). A new eudesmane acid from Dittrichia (Inula) viscosa. Planta Medica, 51, 471.
  • Baytop, T. (1984). Therapy with Medicinal Plants in Turkey. Sanal Press, Istanbul, Turkey, 167pp.
  • Benbacer, L., Merghoub, N., El Btaouri, H., Gmouh, S., Attaleb, M., Morjani, H., Amzazi, S., & El Mzibri, M. (2012). Antiproliferative effect and induction of apoptosis by Inula viscosa L. and Retama monosperma L. extracts in human cervical cancer cells, in: Rajamanickam. Topics on Cervical Cancer with an Advocacy for Prevention, InTech, Rijeka, Crotia, 267-284.
  • Beyranvand, F., Alizadeh, M., Shahsavari, S., Azarbaijani, K., Safarzadeh, A., Mohammadi, M. & Sepahvand, A. (2018). A review of the most effective medicinal plants for dermatophytosis in traditional medicine. Biomedical Research and Therapy, 5(6), 2378-2388. doi:10.15419/bmrat.v5i6.450
  • Burkert, J.F.M., Kalil, S.J., Filho, F.M., & Rodrigues, M.I., 2006. Parameters optimization for enzymatic assays using experimental design. Brazilian Journal of Chemical Engineering, 23, 163– 170.
  • Canli, O., & Kurbanoglu, E.B. (2011). Utilization of ram horn peptone in the production of glucose oxidase by a local isolate Aspergillus niger OC-3. Preparative Biochemistry and Biotechnology, 41(1), 73-83. doi:10.1080/10826068.2010.534223
  • Canli, O., & Kurbanoglu, E.B. (2012). Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate. Toxicology and Industrial Health, 28(10), 894-900. doi:10.1177/0748233711425079
  • Canli, O., Tasar, G.E., & Taskin, M. (2013). Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 29(8), 704-710. doi:10.1177/0748233712442737
  • Chaturvedi, S., Bhattacharya, A., Nain, L., Prasanna, R., & Khare, S.K. (2019). Valorization of agro-starchy wastes as substrates for oleaginous microbes. Biomass and Bioenergy, 127. doi:10.1016/j.biombioe.2019.105294
  • Chen, H.Q., Chen, X.M., Li, Y., Wang, J., Jin, Z.Y., Xu, X.M., Zhao, J.W., Chen, T.X., & Xie, Z.J. (2009). Purification and Characterisation of Exo- and Endo-Inulinase From Aspergillus ficuum JNSP5–06. Food Chemistry, 115, 1206-1212.
  • Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211-220. doi:10.1007/s00253-008-1827-1
  • Cohen, Y., Wang, W.Q., Ben-Daniel, B.-H., & Ben-Daniel, Y. (2006). Extracts of Inula viscosa control downy mildew of grapes caused by Plasmopara viticola. Phytopathology, 96, 417-424.
  • Danino, O., Gottlieb, H.E., Grossman, S., & Bergman, M. (2009). Antioxidant activity of 1, 3-dicaffeoylquinic acid isolated from Inula viscosa. Food Research International, 42, 1273-1280.
  • Deng, H., Bian, Z., Yang, F., Liu, S., Li, Z., Fan, Z., & Tang, G. (2019). Use of autoclave extraction and liquid chromatography with tandem mass spectrometry for determination of maleic hydrazide residues in tobacco. Journal of Seperation Science, 42(14), 2390-2397. doi:10.1002/jssc.201900250
  • Dor, E., & Hershenhorn, J. (2012). Allelopathic effects of Inula viscosa leaf extracts on weeds. Allelopathy Journal, 30(2), 281-289.
  • Erdal, S., Canli, O., & Algur, O.F. (2011). Inulinase production by Geotrichum candidum using Jerusalem artichoke. Romanian Biotechnological Letters, 16(4), 6375-6381.
  • Ertuğ, F. (2014). Illustrated Flora of Turkey. Etnobotanik, 1, 354.
  • Farid, M.A., Ghoneimy, E.A., El-Khawaga, M.A., Negm-Eldein, A., & Awad, G.E.A. (2013). Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Annals of Microbiology, 63(2), 523-531. doi:10.1007/s13213-012-0497-5
  • Gokbulut, A., Ozhan, O., Satilmis, B., Batcioglu, K., Gunal, S., & Sarer, E. (2013). Antioxidant and Antimicrobial Activities, and Phenolic Compounds of Selected Inula species from Turkey. Natural Product Communications, 8(4), 475-478.
  • Gueribis, F., Zermane, N., Khalfi-Habess, O., Siafa, A., Cimmino, A., Boari, A., & Evidente, A. (2019). Bioefficacy of compounds from Dittrichia viscosa (Asteraceae) as protectant of chickpea seeds against the cowpea seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae). Journal of Plant Diseases and Protection, 126(5), 437-446. doi:10.1007/s41348-019-00240-w
  • Jean, M.D., & Tzeng, Y.F. (2013). Use of Taguchi Methods and Multiple Regression Analysis for Optimal Process Development of High Energy Electron Beam Case Hardening of Cast Iron. Surface Engineering, 19(2), 150-156. doi:10.1179/026708403225002496
  • Kalachaveedu, M., Raghavan, D., Telapolu, S., Kuruvilla, S., & Kedike, B. (2018). Phytoestrogenic effect of Inula racemosa Hook f - A cardioprotective root drug in traditional medicine. Journal of Ethnopharmacology, 210, 408-416. doi:10.1016/j.jep.2017.09.001
  • Karim, F., Al-Okleh, A., Suleiman, S., & Quraan, S. (1990). Poisonous Plants in Jordan. Jordan Natural History Museum, Irbid, Jordan.
  • Kıvak, T. (2014). Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50, 19-28. doi:10.1016/j.measurement.2013.12.017
  • Lauro, L., & Rolih, C. (1990). Observations and research on an extract of Inula viscosa. Bollettino Societa Italiana Biological Sperimentable, 66, 829-834.
  • Mandal, A., Kar, S., Dutta, T., Pati, B.R., Mondal, K.C., & Das Mohapatra, P.K. (2015). Parametric optimization of submerged fermantation conditions for xylanase production by Bacillus cereus BSA1 through Taguchi Methodology. Acta Biologica Szegediensis, 59(2), 189-195.
  • Mangathayaru, K., Kuruvilla, S., Balakrishna, K., & Venkhatesh, J. (2009). Modulatory effect of Inula racemosa Hook. f. (Asteraceae) on experimental atherosclerosis in guinea-pigs. Journal of Pharmacy and Pharmacology, 61(8), 1111-1118. doi:10.1211/jpp/61.08.0016
  • Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Analytical Chemistry, 31, 426-428.
  • Mori, T. (2011). Taguchi methods: benefits, impacts, mathematics, statistics, and applications. ASME Press, New York.
  • Orhan, N., Gökbulut, A., & Deliorman Orhan, D. (2017). Antioxidant potential and carbohydrate digestive enzyme inhibitory effects of five Inula species and their major compounds. South African Journal of Botany, 111, 86-92. doi:10.1016/j.sajb.2017.03.040
  • Ozkan, E.P.K., Yildirim, F.B., Tas, A., Eker, I., Yavuz, I., Ucar, M.Z., & Turker, A. (2019). Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Progress in Nutrition, 21(3), 652-661. doi:10.23751/pn.v21i3.7186
  • Passos, L.P., Vidigal, M.C., de Sousa, F.B., Barud, H.S., de Paiva, A.F.C., Verneque, R.D.S., & Freitas, V.D.P. (2006). Autoclave‐Assisted Acidic Extraction of Water‐Soluble Carbohydrates in Forage Grasses. Communications in Soil Science and Plant Analysis, 37(11-12), 1731-1746. doi:10.1080/00103620600710496
  • Phadke, M.S. (1989). Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs, New Jersey.
  • Rao, R.S., Kumar, C.G. Praksham, R.S., & Hobbs, P.J. (2008). The Taguchi methodolgy as a statistical tool for biotechnological applications: a critical appraisal. Biotechnology Journal, 3(4), 510-523.
  • Seca, A.M., Grigore, A., Pinto, D.C., & Silva, A.M. (2014). The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. Journal of Ethnopharmacology, 154(2), 286-310. doi:10.1016/j.jep.2014.04.010
  • Sguarezi, C., Longo, C., Boni, G., Silva, M.F., Luccio, M.D., Mazutti, M.A., Maugeri, F., Rodrigues, M.I., & Treichel, H. (2009). Inulinase production by agro-industrial residues: Optimization of pretreatment of substrates and production medium. Food Bioprocess Technology, 2, 409-414.
  • Sharma, A.D., Kainth, S., & Gill, P.K. (2006). Inulinase production using garlic ( Allium sativum ) powder as a potential substrate in Streptomyces sp. Journal of Food Engineering, 77(3), 486-491. doi:10.1016/j.jfoodeng.2005.06.072
  • Sharma, P., Verma, A., Sidhu, R.K., & Pandey, O.P. (2005). Process parameter selection for strontium ferrite sintered magnets using Taguchi L9 orthogonal design. Journal of Materials Processing Technology, 168, 147-151.
  • Sharma, P., Verma, A., Sidhu, R.K., & Pandey, O.P. (2006). Effects of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthohonal array design. Journal of Magnetism and Magnetic Materials, 307, 157-164.
  • Singh, R.S., Chauhan, K., Kaur, K., & Pandey, A. (2020). Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Bioresource Technology Reports, 9. doi:10.1016/j.biteb.2019.100364
  • Singh, R.S., Dhaliwal, R., & Puri, M. (2006). Production of Inulinase from Kluyveromyces marxianus YS-1 Using Root Extract of Asparagus racemosus. Process Biochemistry, 41, 1703-1707.
  • Tan, O., Zaimoglu, A.S., Hinislioglu, S., & Altun, S. (2005). Taguchi approac for optimization of the belleding on cement-based grouts. Tunnelling and Underground Space Technology, 20, 167-173.
  • Tasar, O.C. (2017). Enhanced β-fructofuranosidase biosynthesis by Rhodotorula glutinis using Taguchi robust design method. Biocatalysis and Biotransformation, 35(3), 191-196. doi:10.1080/10242422.2017.1304386
  • Tasar, O.C., Erdal, S., & Algur, O.F. (2015). Utilization of Leek (Allium ampeloprasum var. porrum) for inulinase production. Preparative Biochemistry and Biotechnology, 45(6), 596-604. doi:10.1080/10826068.2014.940538
  • Taskin, M., Erdal, S., & Canli, O. (2010). Utilization of waste loquat (Eriobotrya Japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology, 19(4), 1069-1075. doi:10.1007/s10068-010-0150-7
  • Taskin, M., Esim, N., Genisel, M., Ortucu, S., Hasenekoglu, I., Canli, O., & Erdal, S. (2013). Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields. Preparative Biochemistry and Biotechnology, 43, 177-188.
  • Taskin, M., Ortucu, S., Unver, Y., Tasar, O.C., Ozdemir, M., & Kaymak, H. C. (2016). Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Safety and Environmental Protection, 103, 136-143. doi:10.1016/j.psep.2016.07.006
  • Xiong, C., Jinhua, W., & Dongsheng, L. (2007). Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology. Biochemical Engineering Journal, 34(2), 179-184. doi:10.1016/j.bej.2006.12.012
  • Zeggwagh, N.A., Ouahidi, M.L., Lemhadri, A., & Eddouks, M. (2006). Study of hypoglycaemic and hypolipidemic effects of Inula viscosa L. aqueous extract in normal and diabetic rats. Journal of Ethnopharmacology, 108(2), 223-227. doi:10.1016/j.jep.2006.05.005
Primary Language en
Subjects Biology
Journal Section Research Articles

Orcid: 0000-0002-4313-5373
Author: Özden CANLI TAŞAR (Primary Author)
Country: Turkey

Thanks All the experiments were done in the laboratories of High Technology Application and Research Centre (YUTAM), Erzurum Technical University, Erzurum, Turkey.

Application Date : June 3, 2020
Acceptance Date : June 23, 2020
Publication Date : June 29, 2020

Bibtex @research article { commagene747618, journal = {Commagene Journal of Biology}, issn = {}, eissn = {2602-456X}, address = {Adıyaman Bilimsel Araştırmalar Derneği,}, publisher = {ABADER (Adıyaman Bilimsel Araştırmalar Derneği)}, year = {2020}, volume = {4}, pages = {67 - 73}, doi = {10.31594/commagene.747618}, title = {Inulinase production capability of a promising medicinal plant: Inula viscosa}, key = {cite}, author = {Canlı Taşar, Özden} }
APA Canlı Taşar, Ö . (2020). Inulinase production capability of a promising medicinal plant: Inula viscosa . Commagene Journal of Biology , 4 (1) , 67-73 . DOI: 10.31594/commagene.747618
MLA Canlı Taşar, Ö . "Inulinase production capability of a promising medicinal plant: Inula viscosa" . Commagene Journal of Biology 4 (2020 ): 67-73 <>
Chicago Canlı Taşar, Ö . "Inulinase production capability of a promising medicinal plant: Inula viscosa". Commagene Journal of Biology 4 (2020 ): 67-73
RIS TY - JOUR T1 - Inulinase production capability of a promising medicinal plant: Inula viscosa AU - Özden Canlı Taşar Y1 - 2020 PY - 2020 N1 - doi: 10.31594/commagene.747618 DO - 10.31594/commagene.747618 T2 - Commagene Journal of Biology JF - Journal JO - JOR SP - 67 EP - 73 VL - 4 IS - 1 SN - -2602-456X M3 - doi: 10.31594/commagene.747618 UR - Y2 - 2020 ER -
EndNote %0 Kommagene Biyoloji Dergisi Inulinase production capability of a promising medicinal plant: Inula viscosa %A Özden Canlı Taşar %T Inulinase production capability of a promising medicinal plant: Inula viscosa %D 2020 %J Commagene Journal of Biology %P -2602-456X %V 4 %N 1 %R doi: 10.31594/commagene.747618 %U 10.31594/commagene.747618
ISNAD Canlı Taşar, Özden . "Inulinase production capability of a promising medicinal plant: Inula viscosa". Commagene Journal of Biology 4 / 1 (June 2020): 67-73 .
AMA Canlı Taşar Ö . Inulinase production capability of a promising medicinal plant: Inula viscosa. Comm. J. Biol.. 2020; 4(1): 67-73.
Vancouver Canlı Taşar Ö . Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene Journal of Biology. 2020; 4(1): 67-73.
IEEE Ö. Canlı Taşar , "Inulinase production capability of a promising medicinal plant: Inula viscosa", Commagene Journal of Biology, vol. 4, no. 1, pp. 67-73, Jun. 2020, doi:10.31594/commagene.747618