Research Article
BibTex RIS Cite

Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri

Year 2021, Volume: 5 Issue: 2, 182 - 186, 31.12.2021
https://doi.org/10.31594/commagene.1031232

Abstract

Bu çalışmada fiğ (Vicia sativa L.), nohut (Cicer arietinum L.) ve arpa (Hordeum vulgare L.) gelişimi üzerine etkilerini belirlemek amacıyla, bazı Şanlıurfa Baraj Göllerinde yoğun olarak bulunan Microcystis viridis ve Aphanizomenon gracile’in karışık kültürünün farklı dozlarının etkisi araştırılmıştır. Siyanobakteri karışımından hazırlanan dozlar, topraklara püskürtülerek uygulanmıştır. Kök uzunluğu bakımından fiğ de %1.5 uygulama dozu, nohut ve arpada ise %2’lik doz etkili bulunmuştur. Siyanobakteri karışımının %2’lik uygulama dozu her üç bitkinin bitki boyunu kontrole göre arttırmıştır. Kök kuru ve yaş ağırlığına %2’lik uygulama dozu nohut ve arpada etkili bulunurken, yeşil aksam ağırlığına ise fiğ ve nohutta %1.5 uygulama dozu etkili bulunmuştur.

Supporting Institution

Harran Üniversitesi Bilimsel Araştırma Koordinatörlüğü tarafından desteklenmiştir.

Project Number

(HÜBAP-19002)

Thanks

Harran Üniversitesi Bilimsel Araştırma Koordinatörlüğü (HÜBAP-19002) tarafından desteklenmiştir

References

  • Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M…., &, Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology. 30, 1061–1072. https://doi.org/10.1007/s10811-017-1283-3
  • Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A.R., Giuffrida, F., Baglieri, A. (2019). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. Journal of Applied Phycology, 31, 465-470. https://doi.org/10.1007/s10811-018-1518-y
  • Becker, E.W. (1992). Micro-algae for human and animal consumption. In: Borowitzka M A, Borowitzka, L.J, (ed.), Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 222–256.
  • Cires, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21-43. Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348. https://doi.org/10.1016/j.cropro.2007.03.022
  • Demirci, Ö., & Bildirici, N. (2020). Şanlıurfa ekolojik koşullarında yetiştirilen bazı nohut (Cicer arietinum L.) çeşitlerinin verim ve verim unsurlarının belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 20, 656-662. https://doi.org/10.31590/ejosat.754332
  • De Pauw, N., & Persoone, G. (1992). Micro-algae for aquaculture. In: Borowitzka M A, Borowitzka L J, editors. Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 197–221.
  • El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30 (5), 2929-2941.
  • Faheed, F.A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolomic aspects of lettuce plant. Journal of Agriculture & Social Sciences, 4, 165–169.
  • Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758.
  • Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalgae Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061. https://doi.org/10.1007/s10811-015-0625-2
  • Innok, S., Chunleuchanon, S., Boonkerd, N., & Teaumroong, N. (2009). Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. Journal of Applied Phycology, 21, 737. https://doi.org/10.1007/s10811-009-9409-x
  • Johnson, E.A, & An, G.H. (1991). Astaxanthin from Microbial Sources. Critical Reviews in Biotechnology, 11(4), 297–326. https://doi.org/10.3109/07388559109040622
  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51. https://doi.org/10.1007/s12223-009-0007-8
  • Kızılgeçi, F., Akıncı, C., Albayrak, Ö., Biçer, B.T., Başdemir, F., & Yıldırım, M. (2016). Bazı arpa genotiplerinin Diyarbakır ve Şanlıurfa koşullarında verim ve kalite özellikleri açısından incelenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(1), 146-150. https://doi.org/10.21566/tarbitderg.280319
  • Kociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264. https://doi.org/10.1007/s11356-012-1426-7
  • Komárek, J. (2013). Cyanoprokaryota, 3.Teil: Heterocytousgenera. In Büdel, B., G. Gartner, L. Krienitz & M. Schlager(eds), Süsswasserflora von Mitteleuropa 19(3). Springer, Berlin.
  • Komárek, J., & Anagnostidis, K.C. (2008). Teil 1/Part 1: Chroococcales. Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds, Spektrum Akademischer Verlag: Heidelberg, Germany, 19(1), 1–556.
  • Komárek, J., & Komárková, J. (2006) Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology, 6, 1–32.
  • Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B.K., Kumar, A., ….& Saxena, A.K. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae, 164, 94–101.
  • Oswald W.J. (1992). Micro-algae and waste-water treatment. In: Borowitzka, M.A, Borowitzka, L.J, (eds). Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 305–328.
  • Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., & Tamagnini, P. (2009). Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33(5), 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x
  • Puglisi, I., La Bella, E., Rovetto, E.I., Lo Pierro, A.R., & Baglieri, A. (2020). Biostimulant Effect and Biochemical Response in Lettuce Seedlings Treated with A Scenedesmus quadricauda Extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123
  • Rachidi, F., Benhima, R., Sbabou, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports, 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
  • Rossi, F., & De Philippis, R. (2016). Exocellular Polysaccharides in Microalgae and Cyanobacteria: Chemical Features, Role and Enzymes and Genes involved in Their Biosynthesis. The Physiology of Microalgae Springer, 6, 565-590. https://doi.org/10.1007/978-3-319-24945-2_21
  • Sağlamtimur, T., Tükel, T., Gülcan, H., Anlarsal, A.E., & Tansı, V. (1991). GAP Bölgesinde yem bitkileri yetiştirme olanakları. Türkiye II. Çayır Mera kongresi Bildiri Kitabı, 213-223.
  • Singh, S., & Datta, P. (2007). Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant Soil, 296, 95–102. https://doi.org/10.1007/s11104-007-9293-6
  • Wilde, E.W, & Benemann, J.R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11(4), 781–812. https://doi.org/10.1016/0734-9750(93)90003-6
  • Wuang, S.C., Khin, M.C., Chua, P.Q.D., & Luo, Y.D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009
  • Zhang, J., Wang, X., & Zhou, Q. (2017).Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass and Bioenergy, 97, 132-138. https://doi.org/10.1016/j.biombioe.2016.12.024

Effects of Microcystis viridis and Aphanizomenon gracile Mixed Culture on the Growth of Vetch, Chickpea, and Barley

Year 2021, Volume: 5 Issue: 2, 182 - 186, 31.12.2021
https://doi.org/10.31594/commagene.1031232

Abstract

In this study, the effects of different doses of mixed cultures of Microcystis viridis and Aphanizomenon gracile, which are densely found in some Şanlıurfa Dam Lakes, were investigated to determine their effects on the growth of vetch (Vicia sativa L.), chickpea (Cicer arietinum L.), and barley (Hordeum vulgare L.). The doses prepared from the cyanobacteria mixture were applied to the soil by spraying. In terms of root length, 1.5% application dose in vetch and 2% dose in chickpea and barley were found to be effective. The 2% application dose of the cyanobacteria mixture increased the plant height of all three plants compared to the control. While 2% application dose was found to be effective on root dry and wet weight in chickpea and barley, 1.5% application dose was found to be effective on shoot weight in vetch and chickpea.

Project Number

(HÜBAP-19002)

References

  • Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M…., &, Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology. 30, 1061–1072. https://doi.org/10.1007/s10811-017-1283-3
  • Barone, V., Puglisi, I., Fragalà, F., Lo Piero, A.R., Giuffrida, F., Baglieri, A. (2019). Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. Journal of Applied Phycology, 31, 465-470. https://doi.org/10.1007/s10811-018-1518-y
  • Becker, E.W. (1992). Micro-algae for human and animal consumption. In: Borowitzka M A, Borowitzka, L.J, (ed.), Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 222–256.
  • Cires, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21-43. Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348. https://doi.org/10.1016/j.cropro.2007.03.022
  • Demirci, Ö., & Bildirici, N. (2020). Şanlıurfa ekolojik koşullarında yetiştirilen bazı nohut (Cicer arietinum L.) çeşitlerinin verim ve verim unsurlarının belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 20, 656-662. https://doi.org/10.31590/ejosat.754332
  • De Pauw, N., & Persoone, G. (1992). Micro-algae for aquaculture. In: Borowitzka M A, Borowitzka L J, editors. Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 197–221.
  • El Arroussi, H., Benhima, R., Elbaouchi, A., Sijilmassi, B., El Mernissi, N., Aafsar, A., Meftah-Kadmiri, I., Bendaou, N., & Smouni, A. (2018). Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30 (5), 2929-2941.
  • Faheed, F.A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolomic aspects of lettuce plant. Journal of Agriculture & Social Sciences, 4, 165–169.
  • Fenner, K., Canonica, S., Wackett, L.P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341, 752–758.
  • Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalgae Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061. https://doi.org/10.1007/s10811-015-0625-2
  • Innok, S., Chunleuchanon, S., Boonkerd, N., & Teaumroong, N. (2009). Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. Journal of Applied Phycology, 21, 737. https://doi.org/10.1007/s10811-009-9409-x
  • Johnson, E.A, & An, G.H. (1991). Astaxanthin from Microbial Sources. Critical Reviews in Biotechnology, 11(4), 297–326. https://doi.org/10.3109/07388559109040622
  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51. https://doi.org/10.1007/s12223-009-0007-8
  • Kızılgeçi, F., Akıncı, C., Albayrak, Ö., Biçer, B.T., Başdemir, F., & Yıldırım, M. (2016). Bazı arpa genotiplerinin Diyarbakır ve Şanlıurfa koşullarında verim ve kalite özellikleri açısından incelenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25(1), 146-150. https://doi.org/10.21566/tarbitderg.280319
  • Kociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., & Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243-5264. https://doi.org/10.1007/s11356-012-1426-7
  • Komárek, J. (2013). Cyanoprokaryota, 3.Teil: Heterocytousgenera. In Büdel, B., G. Gartner, L. Krienitz & M. Schlager(eds), Süsswasserflora von Mitteleuropa 19(3). Springer, Berlin.
  • Komárek, J., & Anagnostidis, K.C. (2008). Teil 1/Part 1: Chroococcales. Süßwasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds, Spektrum Akademischer Verlag: Heidelberg, Germany, 19(1), 1–556.
  • Komárek, J., & Komárková, J. (2006) Diversity of Aphanizomenon-like cyanobacteria. Czech Phycology, 6, 1–32.
  • Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B.K., Kumar, A., ….& Saxena, A.K. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae, 164, 94–101.
  • Oswald W.J. (1992). Micro-algae and waste-water treatment. In: Borowitzka, M.A, Borowitzka, L.J, (eds). Micro-algal biotechnology. Cambridge, United Kingdom, Cambridge University Press, 305–328.
  • Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., & Tamagnini, P. (2009). Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33(5), 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x
  • Puglisi, I., La Bella, E., Rovetto, E.I., Lo Pierro, A.R., & Baglieri, A. (2020). Biostimulant Effect and Biochemical Response in Lettuce Seedlings Treated with A Scenedesmus quadricauda Extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123
  • Rachidi, F., Benhima, R., Sbabou, L., & El Arroussi, H. (2020). Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports, 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004
  • Rossi, F., & De Philippis, R. (2016). Exocellular Polysaccharides in Microalgae and Cyanobacteria: Chemical Features, Role and Enzymes and Genes involved in Their Biosynthesis. The Physiology of Microalgae Springer, 6, 565-590. https://doi.org/10.1007/978-3-319-24945-2_21
  • Sağlamtimur, T., Tükel, T., Gülcan, H., Anlarsal, A.E., & Tansı, V. (1991). GAP Bölgesinde yem bitkileri yetiştirme olanakları. Türkiye II. Çayır Mera kongresi Bildiri Kitabı, 213-223.
  • Singh, S., & Datta, P. (2007). Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant Soil, 296, 95–102. https://doi.org/10.1007/s11104-007-9293-6
  • Wilde, E.W, & Benemann, J.R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11(4), 781–812. https://doi.org/10.1016/0734-9750(93)90003-6
  • Wuang, S.C., Khin, M.C., Chua, P.Q.D., & Luo, Y.D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64. https://doi.org/10.1016/j.algal.2016.02.009
  • Zhang, J., Wang, X., & Zhou, Q. (2017).Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass and Bioenergy, 97, 132-138. https://doi.org/10.1016/j.biombioe.2016.12.024
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Göksal Sezen 0000-0001-9054-851X

Çiğdem Küçük 0000-0001-5688-5440

Project Number (HÜBAP-19002)
Publication Date December 31, 2021
Submission Date December 1, 2021
Acceptance Date December 8, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232