Research Article
BibTex RIS Cite

Laccase Production of Newly Isolated Trametes versicolor under Batch, Repeated-Batch, and Solid-State Fermentation Processes

Year 2022, Volume: 6 Issue: 2, 190 - 196, 31.12.2022
https://doi.org/10.31594/commagene.1197055

Abstract

In this study, the laccase production ability of the newly isolated Trametes versicolor strain was investigated in three different fermentation processes. In all three fermentation processes, the fungus was able to produce the laccase enzyme. During the solid-state fermentation process 13.21 U/mL laccase activity was detected on the 20th day in the 10 mM copper-containing medium, while this value reached to 27.30 U/mL in the medium containing 0.5 mM ABTS+10 mM copper. During the liquid batch fermentation process, laccase activity was significantly induced in the medium containing 1 mM copper and the laccase activities reached 2.25, 19.83 and 24.57 U/mL compared to the medium without copper on the 3rd, 6th, and 9th days, respectively. ABTS and xylidine induced the laccase production of this strain at a much lower level than copper. The liquid repeated-batch process also significantly induced the laccase production. While low level of enzyme activities were detected in a copper-free medium, laccase activities were induced in the copper-containing medium and the activity increased from 0.66 U/mL to 9.87 U/mL at the 6th use of the pellets. Copper was detected as an effective inducer for laccase production in all fermentation processes and activity staining after native polyacrylamide gel electrophoresis clearly showed the active laccase bands. The results revealed that this strain is a good laccase producer and the laccase production yield varies depending on the fermentation process, production time, and inducer used.

Supporting Institution

Inonu University Scientific Research Projects Coordination Unit

Project Number

FYL-2019-1756

Thanks

This study was supported by Inonu University Scientific Research Projects Coordination Unit (Grant No: FYL-2019-1756).

References

  • Agrawal, K., Chaturvedi, V., & Verma, P. (2018). Fungal laccase discovered but yet undiscovered, Bioresources and Bioprocessing, 5(1), 1-12. https://doi.org/10.1186/s40643-018-0190-z
  • Birhanli, E., & Yesilada, O. (2006). Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode. Enzyme and Microbial Technology, 39(6), 1286-1293. https://doi.org/10.1016/j.enzmictec.2006.03.015
  • Birhanli, E., & Yesilada, O. (2010). Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochemical Engineering Journal, 52(1), 33-37. https://doi.org/10.1016/j.bej.2010.06.019
  • Birhanli, E., & Yeşilada, Ö. (2017). The effect of various inducers and their combinations with copper on laccase production of Trametes versicolor pellets in a repeated-batch process, Turkish Journal of Biology, 41(4), 587-599. https://doi.org/10.3906/biy-1608-44
  • Boran, F., & Yesilada, O. (2011). Enhanced production of laccase by fungi under solid substrate fermentation condition. BioResources, 6(4), 4404-4416.
  • Boran, F., & Yesilada, O. (2022). Laccase production by newly isolated Ganoderma lucidum with solid state fermentation conditions and its using for dye decolorization. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(17) 458-470. https://doi.org/10.54365/adyumbd.1107682
  • Collins, P.J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology, 63(9), 3444-3450.
  • Cordi, L., Minussi, R.C., Freire, R.S., & Durán, N. (2007). Fungal laccase: copper induction, semi- purification, immobilization, phenolic effluent treatment and electrochemical measurement. African Journal of Biotechnology, 6(10), 1255-1259.
  • Dhull, N., Michael, M., Simran, P., Gokak, V.R., & Venkatanagaraju, E. (2020). Production and Purification strategies for laccase. International Journal of Pharmaceutical Sciences and Research, 11(6),2617-2625. https://doi.org/10.13040/IJPSR.0975-8232.11(6).2617-25
  • Eggert, C., Temp, U., & Eriksson, K.E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151-1158.
  • Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T. & Kvesitadze, G. (2008). Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource Technology, 99(3), 457-462. https://doi.org/10.1016/j.biortech.2007.01.011
  • Forootanfar, H., & Faramarzi, M.A. (2015). Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnology Progress, 31(6), 1443-1463. https://doi.org/10.1002/btpr.2173
  • Kılıç, A., & Yeşilada, E. (2013). Preliminary results on antigenotoxic effects of dried mycelia of two medicinal mushrooms in Drosophila melanogaster somatic mutation and recombination test. International Journal of Medicinal Mushrooms, 15(4) 415-421. https://doi.org/10.1615/intjmedmushr.v15.i4.90
  • Krishna, C. (2005). Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology, 25(1-2), 1-30. https://doi.org/10.1080/07388550590925383
  • Levin, L., Herrmann, C., & Papinutti, V. L. (2008). Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochemical Engineering Journal, 39(1), 207-214. https://doi.org/10.1016/j.bej.2007.09.004
  • Lorenzo, M., Moldes, D., & Sanromán, M.Á. (2006). Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere, 63(6), 912-917. https://doi.org/10.1016/j.chemosphere.2005.09.046
  • Manan, M.A., & Webb, C. (2017). Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology and Bioengineering, 4(1), 91. https://doi.org/10.15406/jabb.2017.04.00094
  • Mayer, A.M., & Staples, R.C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6), 551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
  • Moreno, A.D., Ibarra, D., Eugenio, M.E., & Tomás‐Pejó, E. (2020). Laccases as versatile enzymes: from industrial uses to novel applications. Journal of Chemical Technology & Biotechnology, 95(3), 481-494. https://doi.org/10.1002/jctb.6224
  • Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1), 69-80. https://doi.org/10.1016/S0960-8524(99)00142-X
  • Papinutti, V.L., & Forchiassin, F. (2007). Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. Journal of Food Engineering, 81(1), 54-59. https://doi.org/10.1016/j.jfoodeng.2006.10.006
  • Rodríguez-Delgado, M., Orona-Navar, C., García-Morales, R., Hernandez-Luna, C., Parra, R., Mahlknecht, J., & Ornelas-Soto, N. (2016). Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. International Biodeterioration & Biodegradation, 108, 34-41. https://doi.org/10.1016/j.ibiod.2015.12.003
  • Rosales, E., Couto, S.R., & Sanromán, M.A. (2007). Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 40(5), 1286-1290. https://doi.org/10.1016/j.enzmictec.2006.09.015
  • Sharma, R.K., & Arora, D.S. (2010). Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresource Technology, 101(23), 9248-9253. https://doi.org/10.1016/j.biortech.2010.07.042
  • Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19-26. http://dx.doi.org/10.1099/13500872-140-1-19
  • Upadhyay, P., Shrivastava, R., & Agrawal, P.K. (2016). Bioprospecting and biotechnological applications of fungal laccase 3. Biotech, 6(1), 1-15. https://doi.org/10.1007/s13205-015-0316-3
  • Winder, M., Bulska-Bedkowska, W., & Chudek, J. (2021). The use of Hericium erinaceus and Trametes versicolor extracts in supportive treatment in oncology. Acta Pharmaceutica, 71, 1–16 https://doi.org/10.2478/acph-2021-0007
  • Yeşilada, Ö., Birhanli, E., Ercan, S., & Özmen, N. (2014). Reactive dye decolorization activity of crude laccase enzyme from repeated-batch culture of Funalia trogii. Turkish Journal of Biology, 38(1), 103-110. https://doi.org/10.3906/biy-1308-38

Yeni İzole Edilen Trametes versicolor'un Kesikli, Tekrarlı-Kesikli ve Katı-Faz Fermentasyon Süreçlerinde Lakkaz Üretimi

Year 2022, Volume: 6 Issue: 2, 190 - 196, 31.12.2022
https://doi.org/10.31594/commagene.1197055

Abstract

Bu çalışmada yeni izole edilmiş Trametes versicolor suşunun lakkaz üretim yeteneği üç farklı fermentasyon sürecinde araştırılmıştır. Üç fermentasyon sürecinde de fungus lakkaz enzimini üretebilmiştir. Katı-faz fermentasyonu sürecinde 10 mM bakır içeren ortamda üretimin 20. gününde 13.21 U/mL lakkaz aktivitesi izlenmiştir, bu değer 0.5 mM ABTS+10 mM bakır içeren ortamda ise 27.30 U/mL’ye ulaşmıştır. Sıvı kesikli fermentasyon sürecinde ise 1 mM bakır içeren ortamda bakır içermeyen ortama göre lakkaz aktivitesi önemli oranda indüklenmiş ve lakkaz aktiviteleri 3, 6 ve 9. günlerde sırasıyla 2.25, 19.83 ve 24.57 U/mL’ye ulaşmıştır. ABTS ve ksilidin bu suşun lakkaz üretimini bakıra göre çok daha düşük düzeyde indüklemiştir. Sıvı tekrarlı-kesikli süreç de lakkaz üretimini önemli oranda indüklemiştir. Bakır içermeyen ortamda düşük düzeyde enzim aktiviteleri saptanırken, bakır içeren ortamda lakkaz aktiviteleri indüklenmiş ve peletlerin 6. kullanımında aktivite 0.66 U/mL’den 9.87 U/mL’ye ulaşmıştır. Tüm fermentasyon süreçlerinde, bakırın lakkaz üretimi için önemli bir indükleyici olduğu gözlenmiştir ve doğal poliakrilamid jel elektroforezi sonrası yapılan aktivite boyamaları aktif lakkaz bantlarını net olarak göstermiştir. Sonuçlar, bu suşun iyi bir lakkaz üreticisi olduğunu ve fermentasyon sürecine, üretim zamanına ve kullanılan indükleyiciye bağlı olarak lakkaz üretim veriminin değiştiğini ortaya koymuştur.

Project Number

FYL-2019-1756

References

  • Agrawal, K., Chaturvedi, V., & Verma, P. (2018). Fungal laccase discovered but yet undiscovered, Bioresources and Bioprocessing, 5(1), 1-12. https://doi.org/10.1186/s40643-018-0190-z
  • Birhanli, E., & Yesilada, O. (2006). Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode. Enzyme and Microbial Technology, 39(6), 1286-1293. https://doi.org/10.1016/j.enzmictec.2006.03.015
  • Birhanli, E., & Yesilada, O. (2010). Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochemical Engineering Journal, 52(1), 33-37. https://doi.org/10.1016/j.bej.2010.06.019
  • Birhanli, E., & Yeşilada, Ö. (2017). The effect of various inducers and their combinations with copper on laccase production of Trametes versicolor pellets in a repeated-batch process, Turkish Journal of Biology, 41(4), 587-599. https://doi.org/10.3906/biy-1608-44
  • Boran, F., & Yesilada, O. (2011). Enhanced production of laccase by fungi under solid substrate fermentation condition. BioResources, 6(4), 4404-4416.
  • Boran, F., & Yesilada, O. (2022). Laccase production by newly isolated Ganoderma lucidum with solid state fermentation conditions and its using for dye decolorization. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 9(17) 458-470. https://doi.org/10.54365/adyumbd.1107682
  • Collins, P.J., & Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology, 63(9), 3444-3450.
  • Cordi, L., Minussi, R.C., Freire, R.S., & Durán, N. (2007). Fungal laccase: copper induction, semi- purification, immobilization, phenolic effluent treatment and electrochemical measurement. African Journal of Biotechnology, 6(10), 1255-1259.
  • Dhull, N., Michael, M., Simran, P., Gokak, V.R., & Venkatanagaraju, E. (2020). Production and Purification strategies for laccase. International Journal of Pharmaceutical Sciences and Research, 11(6),2617-2625. https://doi.org/10.13040/IJPSR.0975-8232.11(6).2617-25
  • Eggert, C., Temp, U., & Eriksson, K.E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151-1158.
  • Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T. & Kvesitadze, G. (2008). Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource Technology, 99(3), 457-462. https://doi.org/10.1016/j.biortech.2007.01.011
  • Forootanfar, H., & Faramarzi, M.A. (2015). Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnology Progress, 31(6), 1443-1463. https://doi.org/10.1002/btpr.2173
  • Kılıç, A., & Yeşilada, E. (2013). Preliminary results on antigenotoxic effects of dried mycelia of two medicinal mushrooms in Drosophila melanogaster somatic mutation and recombination test. International Journal of Medicinal Mushrooms, 15(4) 415-421. https://doi.org/10.1615/intjmedmushr.v15.i4.90
  • Krishna, C. (2005). Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology, 25(1-2), 1-30. https://doi.org/10.1080/07388550590925383
  • Levin, L., Herrmann, C., & Papinutti, V. L. (2008). Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochemical Engineering Journal, 39(1), 207-214. https://doi.org/10.1016/j.bej.2007.09.004
  • Lorenzo, M., Moldes, D., & Sanromán, M.Á. (2006). Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemosphere, 63(6), 912-917. https://doi.org/10.1016/j.chemosphere.2005.09.046
  • Manan, M.A., & Webb, C. (2017). Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology and Bioengineering, 4(1), 91. https://doi.org/10.15406/jabb.2017.04.00094
  • Mayer, A.M., & Staples, R.C. (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6), 551-565. https://doi.org/10.1016/S0031-9422(02)00171-1
  • Moreno, A.D., Ibarra, D., Eugenio, M.E., & Tomás‐Pejó, E. (2020). Laccases as versatile enzymes: from industrial uses to novel applications. Journal of Chemical Technology & Biotechnology, 95(3), 481-494. https://doi.org/10.1002/jctb.6224
  • Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1), 69-80. https://doi.org/10.1016/S0960-8524(99)00142-X
  • Papinutti, V.L., & Forchiassin, F. (2007). Lignocellulolytic enzymes from Fomes sclerodermeus growing in solid-state fermentation. Journal of Food Engineering, 81(1), 54-59. https://doi.org/10.1016/j.jfoodeng.2006.10.006
  • Rodríguez-Delgado, M., Orona-Navar, C., García-Morales, R., Hernandez-Luna, C., Parra, R., Mahlknecht, J., & Ornelas-Soto, N. (2016). Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. International Biodeterioration & Biodegradation, 108, 34-41. https://doi.org/10.1016/j.ibiod.2015.12.003
  • Rosales, E., Couto, S.R., & Sanromán, M.A. (2007). Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 40(5), 1286-1290. https://doi.org/10.1016/j.enzmictec.2006.09.015
  • Sharma, R.K., & Arora, D.S. (2010). Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresource Technology, 101(23), 9248-9253. https://doi.org/10.1016/j.biortech.2010.07.042
  • Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology, 140(1), 19-26. http://dx.doi.org/10.1099/13500872-140-1-19
  • Upadhyay, P., Shrivastava, R., & Agrawal, P.K. (2016). Bioprospecting and biotechnological applications of fungal laccase 3. Biotech, 6(1), 1-15. https://doi.org/10.1007/s13205-015-0316-3
  • Winder, M., Bulska-Bedkowska, W., & Chudek, J. (2021). The use of Hericium erinaceus and Trametes versicolor extracts in supportive treatment in oncology. Acta Pharmaceutica, 71, 1–16 https://doi.org/10.2478/acph-2021-0007
  • Yeşilada, Ö., Birhanli, E., Ercan, S., & Özmen, N. (2014). Reactive dye decolorization activity of crude laccase enzyme from repeated-batch culture of Funalia trogii. Turkish Journal of Biology, 38(1), 103-110. https://doi.org/10.3906/biy-1308-38
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Tülay Tutal 0000-0002-7288-9633

Özfer Yeşilada 0000-0003-0038-6575

Filiz Boran 0000-0002-8801-7987

Project Number FYL-2019-1756
Early Pub Date September 4, 2022
Publication Date December 31, 2022
Submission Date October 31, 2022
Acceptance Date December 6, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Tutal, T., Yeşilada, Ö., & Boran, F. (2022). Laccase Production of Newly Isolated Trametes versicolor under Batch, Repeated-Batch, and Solid-State Fermentation Processes. Commagene Journal of Biology, 6(2), 190-196. https://doi.org/10.31594/commagene.1197055