Research Article
BibTex RIS Cite

Sera Koşullarında Farklı Mikorizal Aşılamanın ve Fosfor Dozlarının Fiğ (Vicia sativa) Gelişimine Etkisi

Year 2024, Volume: 8 Issue: 1, 24 - 29, 30.06.2024
https://doi.org/10.31594/commagene.1449187

Abstract

Çoğu bitki, bitki büyümesini ve besin alımını teşvik etmek için topraktaki arbusküler mikorizal mantarlar ile simbiyotik ilişkiler kurabilir. Bu çalışmada farklı mikorizal preparatların (Mikostar, Endo Roots ve G. mosseae) ve farklı fosfor dozlarının adi fiğ gelişimi üzerine etkileri incelenmiştir. Deneme tesadüf parselleri deneme desenine göre 3 tekerrürlü olarak kurulmuştur. Bitki boyu, uygulamaların sürgün ağırlığı, kök ağırlığı, kök uzunluğu, yaprakların klorofil içeriği, mikorizanın kök enfeksiyon oranı ve bazı makro ve mikro besin elementlerinin alımına etkileri araştırılmıştır. Uygulamaların bitki boyu, sürgün ve kök kuru ağırlığı, kök uzunluğu ve kök enfeksiyon yüzdeleri üzerine etkisi farklı bulunmuştur. Artan dozlarda fosfor ve mikorizal aşıların birlikte uygulanması sonucunda, artan fosfor dozlarıyla mikorizanın etkisi azalmıştır. Sonuçlar mikorizanın düşük fosfor dozu veya tek başına aşılanmasının bitki üzerinde olumlu etkisini göstermiştir.

Ethical Statement

Bu çalışma için etik kurul onayı alınmasına gerek yoktur.

Supporting Institution

Harran Üniversitesi, Bilimsel Araştırma Projeleri birimi (HÜBAP)

Project Number

HÜBAP 13150

Thanks

Bu çalışma Harran Üniversitesi, Bilimsel Araştırma Projeleri birimi (HÜBAP) tarafından 13150 numaralı proje ile maddi olarak desteklenmiştir.

References

  • Arnon, D.T. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Balzergue, C., Puech-Pages, V., Becard, G., & Rochange, S.F. (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 62(3), 1049–1060. https://doi.org/10.1093/jxb/erq335
  • Bowles, T.M., Barrios-Masias, F.H., Carlisle, E.A., Cavagnaro, T.R., & Jackson, L.E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, 1223–1234. https://doi.org/10.1016/j.scitotenv.2016.05.178
  • Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M., & Ahammed, G.J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers Microbiology, 8, 2516. https://doi.org/10.3389/fmicb.2017.02516
  • Dejena, L., Ramirez-Serrano, B., Rivero, J., Gamir, J., Lopez-Raez, J.A., & Pozo, M.J. (2022). Phosphorus availability drives mycorrhiza induced resistance in tomato. Front. Plant Science, 13, 1-18. https://doi.org/10.3389/fpls.2022.1060926
  • Deng, Y., Feng, G., Chen, X.P., & Zou, C.Q. (2017). Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat-maize cropping system. Field Crop Reearch, 209, 1–9. https://doi.org/10.1016/j.fcr.2017.04.004
  • Eldhuse, T.D., Swensen, B., Wickstrøm, T., & Gro, W. (2007). Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. Journal of Plant Nutrition and Soil Science, 170, 645–648. https://doi.org/10.1002/jpln.200700005
  • El-Sherbeny, T.M.S., Mousa, A.M., & El-Sayed, R. (2022). Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi Journal of Biological Sciences, 29(1), 331–338. https://doi.org/10.1016/j.sjbs.2021.08.094
  • Giovannetti, M., & Mosse, B. (1980). An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhiza in Roots. New Phytologist, 84, 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  • Golubkina, N., Krivenkov, L., Sekara, A., Vasileva, V., Tallarita, A., & Caruso, G. (2020). Prospects of arbuscular mycorrhizal fungi utilization in production of Allium plants. Plants, 9(2), 279. https://doi.org/10.3390/plants9020279
  • He, L., Li, C.Y., & Liu, R.J. (2017). Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. Mycorrhiza, 27, 525–535. https://doi.org/10.1007/s00572-017-0771-2
  • Higo, M., Azuma, M., Kamiyoshihara, Y., Kanda, A., Tatewaki, Y., & Isobe, K. (2020). Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms, 8(2), 178. https://doi.org/10.3390/microorganisms8020178
  • Hou, L., Zhang, X., Feng, G., Li, Z., Zhang, Y., & Cao, N. (2021). Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China. Scientific Reports, 11, 1100. https://doi.org/10.1038/s41598-020-80074-x
  • Jansa, J., Smith, F.A., & Smith, S.E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177(3), 779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x
  • Kameoka, H., Maeda, T., Okuma, N., & Kawaguchi, M. (2019). Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. Plant Cell Physiology, 60, 2272–2281. https://doi.org/10.1093/pcp/pcz122
  • Koske, R.E., & Gemma, J.N. (1989). A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycological Research, 92(4), 486-488. https://doi.org/10.1016/S0953-7562(89)80195-9
  • Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I., & Bucher, M. (2009). Mycorrhizal phosphate uptake pathway in tomato is phosphorus‐repressible and transcriptionally regulated. New Phytologist, 181, 950–959. https://doi.org/10.1111/j.1469-8137.2008.02721.x
  • Nguyen, T.N., Cavagnaro, T.R., & Watts-Williams, S.J. (2019). The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Scientific Reports, 9, 1-13. https://doi.org/10.1038/s41598-019-51369-5
  • Ortaş, I., Nebahat, S., Akpinar, C., & Halit, Y. (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturea, 128, 92–98. https://doi.org/10.1016/j.scienta.2010.12.014
  • Parihar, M., Meena, V.S., Mishra, P.K., Rakshit, A., Choudhary, M., Yadav, R.P., Rana, K., & Bisht, J.K. (2019). Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives Microbiology, 201, 723–735. https://doi.org/10.1007/s00203-019-01653-9
  • Smith, S.E., Jakobsen, I., Gronlund, M., & Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050–1057. https://doi.org/10.1104/pp.111.174581
  • Song, Y., Rui, Y., Bedane, G., & Li, J. (2016). Morphological characteristics of maize canopy development as affected by increased plant density. PLOS ONE, 11, e0154084. https://doi.org/10.1371/journal.pone.0154084
  • Tawaraya, K., Hirose, R., & Wagatsuma, T. (2012). Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biology and Fertility of Soils, 48, 839–843. https://doi.org/10.1007/s00374-012-0669-2
  • Xie, K., Ren, Y., Chen, A., Yang, C., Zheng, Q., Chen, J., & Xu, G. (2021). Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal Plant Physiology, 269, 153591. https://doi.org/10.1016/j.jplph.2021.153591
  • Xu, P., Liang, L.Z., Dong, X.Y., Xu, J., Jiang, P., & Shen, R. (2014). Response of soil phosphorus required for maximum growth of Asparagus officinalis L. to inoculation of Arbuscular mycorrhizal fungi. Pedosphere, 24, 776–782. https://doi.org/10.1016/S1002-0160(14)60064-3
  • Wang, C.X., Li, X.L., Zhou, J.C., Wang, G.Q., & Dong, Y.Y. (2008). Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Communications in Soil Science and Plant Analysis, 39, 499–509. https://doi.org/10.1080/00103620701826738
  • Wipf, D., Krajinski, F., van Tuinen, D., Recorbet, G., & Courty, P.E. (2019). Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytologist, 223(3), 1127–1142. https://doi.org/10.1111/nph.15775
  • Yang Y., Tang M., Sulpice R., Chen H., Tian S., & Ban Y. (2014). Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal of Plant Growth Regulation, 33, 612–625. https://doi.org/10.1007/s00344-013-9410-0
  • Yoneyama, K., Yoneyama, K., Takeuchi, Y., & Sekimoto, H. (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225, 1031–1038. https://doi.org/10.1007/s00425-006-0410-1
  • Zubek S., Rola K., Szewczyk A., Majewska M.L., & Turnau K. (2015). Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil, 390, 129–142. https://doi.org/10.1007/s11104-015-2388-6
  • Zhu, X.Q., Wang, C.Y., Chen, H., & Tang, M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica, 52, 247–252. https://doi.org/10.1007/s11099-014-0031-z

Effect of Different Mycorrhizal Inoculations and Phosphorus Doses on Vetch (Vicia sativa) Growth under Greenhouse Conditions

Year 2024, Volume: 8 Issue: 1, 24 - 29, 30.06.2024
https://doi.org/10.31594/commagene.1449187

Abstract

Many plants can establish symbiotic relationships with arbuscular mycorrhizal fungi in the soil to promote plant growth and nutrient uptake. In this study, the effects of different mycorrhizal preparations (Mikostar, Endo Roots, and G. mosseae) and different phosphorus doses on the development of common vetch were examined. The experiment was set up according to the random plot design with 3 replications. The effects of the treatments on plant height, green part weight, root weight, root length, chlorophyll content of the leaves, root infection rate of mycorrhizae, and the uptake of some macro- and micro-nutrients were investigated. The effects of the treatments on plant height, green parts and root dry weight, root length, and root infection percentages were found to be different. As a result of the combined application of increasing doses of phosphorus and mycorrhizal inoculants, the effect of mycorrhiza decreased with increasing doses of phosphorus. The results showed the positive effect of inoculating mycorrhiza with low phosphorus dose or alone on the plant.

Project Number

HÜBAP 13150

References

  • Arnon, D.T. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  • Balzergue, C., Puech-Pages, V., Becard, G., & Rochange, S.F. (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 62(3), 1049–1060. https://doi.org/10.1093/jxb/erq335
  • Bowles, T.M., Barrios-Masias, F.H., Carlisle, E.A., Cavagnaro, T.R., & Jackson, L.E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566, 1223–1234. https://doi.org/10.1016/j.scitotenv.2016.05.178
  • Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M., & Ahammed, G.J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers Microbiology, 8, 2516. https://doi.org/10.3389/fmicb.2017.02516
  • Dejena, L., Ramirez-Serrano, B., Rivero, J., Gamir, J., Lopez-Raez, J.A., & Pozo, M.J. (2022). Phosphorus availability drives mycorrhiza induced resistance in tomato. Front. Plant Science, 13, 1-18. https://doi.org/10.3389/fpls.2022.1060926
  • Deng, Y., Feng, G., Chen, X.P., & Zou, C.Q. (2017). Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat-maize cropping system. Field Crop Reearch, 209, 1–9. https://doi.org/10.1016/j.fcr.2017.04.004
  • Eldhuse, T.D., Swensen, B., Wickstrøm, T., & Gro, W. (2007). Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. Journal of Plant Nutrition and Soil Science, 170, 645–648. https://doi.org/10.1002/jpln.200700005
  • El-Sherbeny, T.M.S., Mousa, A.M., & El-Sayed, R. (2022). Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion (Allium cepa L.) plant. Saudi Journal of Biological Sciences, 29(1), 331–338. https://doi.org/10.1016/j.sjbs.2021.08.094
  • Giovannetti, M., & Mosse, B. (1980). An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhiza in Roots. New Phytologist, 84, 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
  • Golubkina, N., Krivenkov, L., Sekara, A., Vasileva, V., Tallarita, A., & Caruso, G. (2020). Prospects of arbuscular mycorrhizal fungi utilization in production of Allium plants. Plants, 9(2), 279. https://doi.org/10.3390/plants9020279
  • He, L., Li, C.Y., & Liu, R.J. (2017). Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones. Mycorrhiza, 27, 525–535. https://doi.org/10.1007/s00572-017-0771-2
  • Higo, M., Azuma, M., Kamiyoshihara, Y., Kanda, A., Tatewaki, Y., & Isobe, K. (2020). Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms, 8(2), 178. https://doi.org/10.3390/microorganisms8020178
  • Hou, L., Zhang, X., Feng, G., Li, Z., Zhang, Y., & Cao, N. (2021). Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China. Scientific Reports, 11, 1100. https://doi.org/10.1038/s41598-020-80074-x
  • Jansa, J., Smith, F.A., & Smith, S.E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177(3), 779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x
  • Kameoka, H., Maeda, T., Okuma, N., & Kawaguchi, M. (2019). Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi. Plant Cell Physiology, 60, 2272–2281. https://doi.org/10.1093/pcp/pcz122
  • Koske, R.E., & Gemma, J.N. (1989). A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycological Research, 92(4), 486-488. https://doi.org/10.1016/S0953-7562(89)80195-9
  • Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I., & Bucher, M. (2009). Mycorrhizal phosphate uptake pathway in tomato is phosphorus‐repressible and transcriptionally regulated. New Phytologist, 181, 950–959. https://doi.org/10.1111/j.1469-8137.2008.02721.x
  • Nguyen, T.N., Cavagnaro, T.R., & Watts-Williams, S.J. (2019). The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Scientific Reports, 9, 1-13. https://doi.org/10.1038/s41598-019-51369-5
  • Ortaş, I., Nebahat, S., Akpinar, C., & Halit, Y. (2011). Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturea, 128, 92–98. https://doi.org/10.1016/j.scienta.2010.12.014
  • Parihar, M., Meena, V.S., Mishra, P.K., Rakshit, A., Choudhary, M., Yadav, R.P., Rana, K., & Bisht, J.K. (2019). Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives Microbiology, 201, 723–735. https://doi.org/10.1007/s00203-019-01653-9
  • Smith, S.E., Jakobsen, I., Gronlund, M., & Smith, F.A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156, 1050–1057. https://doi.org/10.1104/pp.111.174581
  • Song, Y., Rui, Y., Bedane, G., & Li, J. (2016). Morphological characteristics of maize canopy development as affected by increased plant density. PLOS ONE, 11, e0154084. https://doi.org/10.1371/journal.pone.0154084
  • Tawaraya, K., Hirose, R., & Wagatsuma, T. (2012). Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biology and Fertility of Soils, 48, 839–843. https://doi.org/10.1007/s00374-012-0669-2
  • Xie, K., Ren, Y., Chen, A., Yang, C., Zheng, Q., Chen, J., & Xu, G. (2021). Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal Plant Physiology, 269, 153591. https://doi.org/10.1016/j.jplph.2021.153591
  • Xu, P., Liang, L.Z., Dong, X.Y., Xu, J., Jiang, P., & Shen, R. (2014). Response of soil phosphorus required for maximum growth of Asparagus officinalis L. to inoculation of Arbuscular mycorrhizal fungi. Pedosphere, 24, 776–782. https://doi.org/10.1016/S1002-0160(14)60064-3
  • Wang, C.X., Li, X.L., Zhou, J.C., Wang, G.Q., & Dong, Y.Y. (2008). Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Communications in Soil Science and Plant Analysis, 39, 499–509. https://doi.org/10.1080/00103620701826738
  • Wipf, D., Krajinski, F., van Tuinen, D., Recorbet, G., & Courty, P.E. (2019). Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytologist, 223(3), 1127–1142. https://doi.org/10.1111/nph.15775
  • Yang Y., Tang M., Sulpice R., Chen H., Tian S., & Ban Y. (2014). Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. Journal of Plant Growth Regulation, 33, 612–625. https://doi.org/10.1007/s00344-013-9410-0
  • Yoneyama, K., Yoneyama, K., Takeuchi, Y., & Sekimoto, H. (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225, 1031–1038. https://doi.org/10.1007/s00425-006-0410-1
  • Zubek S., Rola K., Szewczyk A., Majewska M.L., & Turnau K. (2015). Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil, 390, 129–142. https://doi.org/10.1007/s11104-015-2388-6
  • Zhu, X.Q., Wang, C.Y., Chen, H., & Tang, M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica, 52, 247–252. https://doi.org/10.1007/s11099-014-0031-z
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Microbial Ecology
Journal Section Research Articles
Authors

Ferhat Yıldırım 0009-0006-9399-8245

Cenap Cevheri 0000-0002-3759-4645

Çiğdem Küçük 0000-0001-5688-5440

Project Number HÜBAP 13150
Publication Date June 30, 2024
Submission Date March 8, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Yıldırım, F., Cevheri, C., & Küçük, Ç. (2024). Sera Koşullarında Farklı Mikorizal Aşılamanın ve Fosfor Dozlarının Fiğ (Vicia sativa) Gelişimine Etkisi. Commagene Journal of Biology, 8(1), 24-29. https://doi.org/10.31594/commagene.1449187