Research Article
BibTex RIS Cite

Quercetin-Mediated Modulation of Tumor Suppressor miR-15a, miR-34a, and p53 Signaling in MCF-7 Breast Cancer Cells

Year 2025, Volume: 9 Issue: 1, 80 - 85, 30.06.2025
https://doi.org/10.31594/commagene.1662649

Abstract

Breast cancer remains one of the most prevalent types of cancer among women globally, contributing significantly to cancer-related mortality. Despite advancements in treatment, many cases continue to exhibit resistance to chemotherapy, radiotherapy, and hormonal therapies, often resulting in drug resistance, high recurrence rates, and severe side effects. Consequently, the role of the natural food components in cancer prevention and treatment is gaining increasing attention in modern medicine. This study focuses on quercetin, a phytochemical compound, and its effects on the breast cancer cell line MCF-7. Specifically, the study has investigated changes in the expression of miR-15a and miR-34a—microRNAs (miRNAs) known to regulate gene expression at the post-transcriptional level—and the P53 gene, which is critically involved in apoptosis. The analysis was performed using quantitative polymerase chain reaction (qPCR) and Western blot techniques. The results demonstrated that quercetin treatment at concentrations of 40 µM and 80 µM led to a 1.34-fold and 2.73-fold increase in P53 gene expression, respectively. Additionally, the tumor suppressor miRNA miR-15a showed expression changes of 1.48-fold and 1.69-fold at the same quercetin concentrations. Similarly, miR-34a expression levels increased by 1.23-fold and 1.39-fold at 40 µM and 80 µM, respectively. These findings suggest that dietary phytochemicals, such as quercetin, may have therapeutic potential by modulating miRNA expression and targeting the p53 pathway. In conclusion, quercetin emerges as a promising natural therapeutic agent for breast cancer, warranting further in vivo studies and clinical trials to confirm its efficacy and explore its potential as a part of combination therapies.

Ethical Statement

Ethics committee approval is not required for this study.

Supporting Institution

Siirt University BAP

Project Number

2022-SİÜTIP-050

Thanks

This project was supported by Siirt University BAP project number "2022-SİÜTIP-050"

References

  • Adinew, G. M., Taka, E., Mendonca, P., Messeha, S.S., & Soliman, K.F.A. (2021). The anticancer effects of flavonoids through miRNAs modulations in triple-negative breast cancer. Nutrients, 13(4), 1212. https://doi.org/10.3390/nu13041212
  • Agarwal, S., Hanna, J., Sherman, M.E., Figueroa, J., & Rimm, D.L. (2015). Quantitative assessment of miR34a as an independent prognostic marker in breast cancer. British Journal of Cancer, 112(1), 61–68. https://doi.org/10.1038/bjc.2014.573
  • Aktas, H.G., & Ayan, H. (2021). Oleuropein: A Potential Inhibitor for Prostate Cancer Cell Motility by Blocking Voltage-Gated Sodium Channels. Nutrition and Cancer, 73(9), 1758–1767. https://doi.org/10.1080/01635581.2020.1807575
  • Amit, M., Takahashi, H., Dragomir, M.P., Lindemann, A., Gleber-Netto, F.O., Pickering, C.R., ..., & Myers, J.N. (2020). Loss of p53 drives neuron reprogramming in head and neck cancer. Nature, 578(7795), 449–454. https://doi.org/10.1038/s41586-020-1996-3
  • Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., ..., & Vassella, E. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non–small cell lung cancer. Cancer Research, 69(13), 5553-5559. https://doi.org/10.1158/0008-5472.CAN-08-4277
  • Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S.E., Shimizu, M., ..., & Croce, C. M. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences, 105(13), 5166-5171. https://doi.org/10.1073/pnas.0800121105
  • Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., ... & Mendell, J.T. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745-752.. https://doi.org/10.1016/j.molcel.2007.05.010
  • Chen, X., Li., H., Zhang, B., Deng, Z., & Zhang, X. (2022). The role of quercetin in cancer prevention and therapy: A comprehensive review. Phytotherapy Research, 36(1), 1–15. https://doi.org/10.1002/ptr.7286
  • Erbes, T., Hirschfeld, M., Rücker, G., Jaeger, M., Boas, J., Iborra, S., ..., & Stickeler, E. (2015). Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer, 15, 193.
  • Ezzati, M., Yousefi, B., Velaei, K., & Safa, A. (2020). A review on anti-cancer properties of quercetin in breast cancer. Life Sciences, 248, 117463. https://doi.org/10.1016/j.lfs.2020.117463
  • Ferdin, J., Kunej, T., & Calin, G.A. (2010). Non-coding RNAs: Identification of cancer-associated microRNAs by gene profiling. Technology in Cancer Research & Treatment, 9, 123–138. https://doi.org/10.1177/153303461000900202
  • Gilbert, E.R., & Liu, D. (2010). Flavonoids influence epigenetic-modifying enzyme activity: Structure-function relationships and the therapeutic potential for cancer. Current Medicinal Chemistry, 17(17), 1756–1768.
  • Gungormez, C., & Acar, D. (2019). Identıfıcatıon of miR-145-1, miR-21-2 And miR-92-1 Expressıon and Target Genes in Colon Cancer Stage IIIA Patients. Turkish Journal of Biochemistry. Supplement, 44, 26-28.
  • Gungormez, C. (2024). Identification of hub genes and key pathways targeted by miRNAs in pancreatic ductal adenocarcinoma: MAPK3/8/9 and TGFBR1/2. Human Gene, 39, 201267.
  • Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M., & Moilanen, E. (2007). Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators of Inflammation, 2007, 45673. https://doi.org/10.1155/2007/45673
  • Hashemzaei, M., Delarami Far, A., Yari, A., Heravi, R.E., Tabrizian, K., Taghdisi, S.M., ..., & Rezaee, R. (2017). Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncology Reports, 38(2), 819–828. https://doi.org/10.3892/or.2017.5766
  • Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death & Differentiation, 17(2), 193–199.
  • Imani, S., Wei, C., Cheng, J., Khan, M.A., Fu, S., Yang, L., ..., & Fu, J. (2016). MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 7(8), 1–12. https://doi.org/10.18632/oncotarget.15214
  • Imani, S., Wu, R.C., & Fu, J. (2018). MicroRNA-34 family in breast cancer: From research to therapeutic potential. Journal of Cancer, 9(20), 3765–3775. https://doi.org/10.7150/jca.24187
  • Iqbal, J., Abbasi, B.A., Khalil, A.T., Ali, B., Mahmood, T., Kanwal, S., ..., & Ali, W. (2018). Dietary isoflavones, the modulator of breast carcinogenesis: Current landscape and future perspectives. Asian Pacific Journal of Tropical Medicine, 11(3), 186-193.
  • Kang, L., Mao, J., Tao, Y., Song, B., Ma, W., Lu, Y., ..., & Li, L. (2015). Retracted: Micro RNA‐34a suppresses the breast cancer stem cell‐like characteristics by downregulating Notch1 pathway. Cancer Science, 106(6), 700-708. https://doi.org/10.1111/cas.12656
  • Kawaguchi, T., Yan, L., Qi, Q., Peng, X., Gabriel, E.M., Young, J., ... & Takabe, K. (2017). Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Scientific Reports, 7(1), 15945. https://doi.org/10.1038/s41598-017-16112-y
  • Kim, G.T., Lee, S.H., Kim, J.I., & Kim, Y.M. (2014). Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. International Journal of Molecular Medicine, 33(4), 863-869.
  • Kopustinskiene, D.M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as anticancer agents. Nutrients, 12(2), 457.
  • Li, X.J., Ren, Z.J., Tang, J.H., & Yu, Q. (2019). MiR-34a: A potential therapeutic target in human cancer. Cell Death & Disease, 10(3), 193. https://doi.org/10.1038/s41419-019-1446-z
  • Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M.T., Wang, S., ..., & Yin, Y. (2020). Quercetin, inflammation and immunity. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
  • Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2020). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 10(1), 1–8.
  • Misso, G., Di Martino, M.T., De Rosa, G., Farooqi, A.A., Lombardi, A., Campani, V., ..., & Caraglia, M. (2014). miR-34: A new weapon against cancer? Molecular Therapy - Nucleic Acids, 3, e194. https://doi.org/10.1038/mtna.2014.47
  • Muller, P.A., Vousden, K.H., & Norman, J.C. (2011). p53 and its mutants in tumor cell migration and invasion. The Journal of cell biology, 192(2), 209–218. https://doi.org/10.1083/jcb.201009059
  • Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325. https://doi.org/10.1016/j.canlet.2008.03.046
  • O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, 402.
  • Pang, R.T., Leung, C.O., Ye, T.M., Liu, W., Chiu, P.C., Lam, K.K., ..., & Yeung, W.S. (2010). MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis, 31(6), 1037–1044.
  • Rauf, A., Imran, M., Khan, I.A., Ur-Rehman, M., Gilani, S.A., Mehmood, Z., & Mubarak, M.S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research, 32(11), 2109–2130. https://doi.org/10.1002/ptr.6155
  • Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., ..., & Oren, M. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell, 26(5), 731–743. https://doi.org/10.1016/j.molcel.2007.05.017
  • Rhman, M.A., Devnarain, N., Khan, R., & Owira, P.M.O. (2022). Synergism potentiates oxidative antiproliferative effects of naringenin and quercetin in MCF-7 breast cancer cells. Nutrients, 14(16), 3437.
  • Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. (2019). Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants (Basel, Switzerland), 8(5), 137. https://doi.org/10.3390/antiox8050137
  • Siegel, R.L., Miller, K.D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590
  • Tang, J., Ahmad, A., & Sarkar, F.H. (2012). The role of microRNAs in breast cancer migration, invasion and metastasis. International Journal of Molecular Sciences, 13(10), 13414–13437. https://doi.org/10.3390/ijms131013414
  • Tang, S.M., Deng, X.T., Zhou, J., Li, Q.P., Ge, X.X., & Miao, L. (2021). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy, 133, 111017. https://doi.org/10.1016/j.biopha.2020.111017
  • Tao, S.F., He, H.F., & Chen, Q. (2015). Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Molecular and Cellular Biochemistry, 402(1–2), 93–100.
  • Vousden, K.H., & Lane, D.P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8(4), 275–283. https://doi.org/10.1038/nrm2147
  • Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., & Gao, Y. (2021). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 109, 1–15. https://doi.org/10.1016/j.tifs.2021.01.042
  • Zhang, L., Liao, Y., & Tang, L. (2019). MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 53. https://doi.org/10.1186/s13046-019-1059-5
  • Zhang, J.T., Chen, J., Ruan, H.C., Li, F. X., Pang, S., Xu, Y. J., ..., & Wu, X.H. (2021). Microribonucleic Acid-15a-5p alters Adriamycin resistance in breast cancer cells by targeting cell division cycle-associated protein 4. Cancer Management and Research, 13, 8425–8434.

MCF-7 Meme Kanseri Hücrelerinde Tümör Baskılayıcı miR-15a, miR-34a ve p53 Sinyalizasyonunun Kuersetin Aracılı Modülasyonu

Year 2025, Volume: 9 Issue: 1, 80 - 85, 30.06.2025
https://doi.org/10.31594/commagene.1662649

Abstract

Meme kanseri, küresel olarak kadınlarda en yaygın kanser türlerinden biri olmaya devam etmekte ve kanserle ilişkili ölümlere önemli ölçüde sebep olmaktadır. Tedavideki gelişmelere rağmen, birçok vaka kemoterapi, radyoterapi ve hormonal tedavilere direnç göstermeye devam etmekte ve bu da sıklıkla ilaç direnci, yüksek tekrarlama oranları ve ciddi yan etkilerle sonuçlanmaktadır. Bu nedenle, doğal gıda bileşenlerinin kanser önleme ve tedavisindeki rolü modern tıpta giderek daha fazla ilgi görmektedir. Bu çalışma, bir fitokimyasal bileşik olan kuersetin ve meme kanseri hücre hattı MCF-7 üzerindeki etkilerine odaklanmaktadır. Çalışmada, özellikle, gen ifadesini transkripsiyon sonrası düzeyde düzenlediği bilinen mikroRNA'lar (miRNA) olan miR-15a ve miR-34a'nın ve apoptozda kritik rol oynayan P53 geninin ifadesindeki değişiklikler araştırılmıştır. Analiz, kantitatif polimeraz zincir reaksiyonu (qPCR) ve Western blot teknikleri kullanılarak gerçekleştirilmiştir. Sonuçlar, 40 µM ve 80 µM konsantrasyonlarında kuersetin tedavisinin P53 gen ekspresyonunda sırasıyla 1,34 kat ve 2,73 kat artışa yol açtığını göstermiştir. Ek olarak, tümör baskılayıcı miRNA miR-15a aynı kuersetin konsantrasyonlarında 1,48 kat ve 1,69 kat ekspresyon değişiklikleri olduğu saptanmıştır. Benzer şekilde, miR-34a ekspresyon seviyeleri sırasıyla 40 µM ve 80 µM'de 1,23 kat ve 1,39 kat artmıştır. Bu bulgular, kuersetin gibi diyet fitokimyasallarının miRNA ekspresyonunu düzenleyerek ve p53 yolunu hedefleyerek terapötik potansiyele sahip olabileceğini düşündürmektedir. Sonuç olarak, kuersetin meme kanseri için umut verici bir doğal terapötik ajan olarak ortaya çıkmakta ve etkinliğini doğrulamak ve kombinasyon terapilerinin bir parçası olarak potansiyelini keşfetmek için daha fazla in vivo çalışma ve klinik denemeyi gerektirmektedir.

Ethical Statement

Bu çalışma için etik kurul onayı gerekmemektedir.

Supporting Institution

Siirt Üniversitesi BAP

Project Number

2022-SİÜTIP-050

Thanks

Bu proje Siirt Üniversitesi BAP proje numarası "2022-SİÜTIP-050" tarafından desteklenmiştir.

References

  • Adinew, G. M., Taka, E., Mendonca, P., Messeha, S.S., & Soliman, K.F.A. (2021). The anticancer effects of flavonoids through miRNAs modulations in triple-negative breast cancer. Nutrients, 13(4), 1212. https://doi.org/10.3390/nu13041212
  • Agarwal, S., Hanna, J., Sherman, M.E., Figueroa, J., & Rimm, D.L. (2015). Quantitative assessment of miR34a as an independent prognostic marker in breast cancer. British Journal of Cancer, 112(1), 61–68. https://doi.org/10.1038/bjc.2014.573
  • Aktas, H.G., & Ayan, H. (2021). Oleuropein: A Potential Inhibitor for Prostate Cancer Cell Motility by Blocking Voltage-Gated Sodium Channels. Nutrition and Cancer, 73(9), 1758–1767. https://doi.org/10.1080/01635581.2020.1807575
  • Amit, M., Takahashi, H., Dragomir, M.P., Lindemann, A., Gleber-Netto, F.O., Pickering, C.R., ..., & Myers, J.N. (2020). Loss of p53 drives neuron reprogramming in head and neck cancer. Nature, 578(7795), 449–454. https://doi.org/10.1038/s41586-020-1996-3
  • Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., ..., & Vassella, E. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non–small cell lung cancer. Cancer Research, 69(13), 5553-5559. https://doi.org/10.1158/0008-5472.CAN-08-4277
  • Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S.E., Shimizu, M., ..., & Croce, C. M. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences, 105(13), 5166-5171. https://doi.org/10.1073/pnas.0800121105
  • Chang, T.C., Wentzel, E.A., Kent, O.A., Ramachandran, K., Mullendore, M., Lee, K.H., ... & Mendell, J.T. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745-752.. https://doi.org/10.1016/j.molcel.2007.05.010
  • Chen, X., Li., H., Zhang, B., Deng, Z., & Zhang, X. (2022). The role of quercetin in cancer prevention and therapy: A comprehensive review. Phytotherapy Research, 36(1), 1–15. https://doi.org/10.1002/ptr.7286
  • Erbes, T., Hirschfeld, M., Rücker, G., Jaeger, M., Boas, J., Iborra, S., ..., & Stickeler, E. (2015). Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer, 15, 193.
  • Ezzati, M., Yousefi, B., Velaei, K., & Safa, A. (2020). A review on anti-cancer properties of quercetin in breast cancer. Life Sciences, 248, 117463. https://doi.org/10.1016/j.lfs.2020.117463
  • Ferdin, J., Kunej, T., & Calin, G.A. (2010). Non-coding RNAs: Identification of cancer-associated microRNAs by gene profiling. Technology in Cancer Research & Treatment, 9, 123–138. https://doi.org/10.1177/153303461000900202
  • Gilbert, E.R., & Liu, D. (2010). Flavonoids influence epigenetic-modifying enzyme activity: Structure-function relationships and the therapeutic potential for cancer. Current Medicinal Chemistry, 17(17), 1756–1768.
  • Gungormez, C., & Acar, D. (2019). Identıfıcatıon of miR-145-1, miR-21-2 And miR-92-1 Expressıon and Target Genes in Colon Cancer Stage IIIA Patients. Turkish Journal of Biochemistry. Supplement, 44, 26-28.
  • Gungormez, C. (2024). Identification of hub genes and key pathways targeted by miRNAs in pancreatic ductal adenocarcinoma: MAPK3/8/9 and TGFBR1/2. Human Gene, 39, 201267.
  • Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M., & Moilanen, E. (2007). Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators of Inflammation, 2007, 45673. https://doi.org/10.1155/2007/45673
  • Hashemzaei, M., Delarami Far, A., Yari, A., Heravi, R.E., Tabrizian, K., Taghdisi, S.M., ..., & Rezaee, R. (2017). Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncology Reports, 38(2), 819–828. https://doi.org/10.3892/or.2017.5766
  • Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death & Differentiation, 17(2), 193–199.
  • Imani, S., Wei, C., Cheng, J., Khan, M.A., Fu, S., Yang, L., ..., & Fu, J. (2016). MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 7(8), 1–12. https://doi.org/10.18632/oncotarget.15214
  • Imani, S., Wu, R.C., & Fu, J. (2018). MicroRNA-34 family in breast cancer: From research to therapeutic potential. Journal of Cancer, 9(20), 3765–3775. https://doi.org/10.7150/jca.24187
  • Iqbal, J., Abbasi, B.A., Khalil, A.T., Ali, B., Mahmood, T., Kanwal, S., ..., & Ali, W. (2018). Dietary isoflavones, the modulator of breast carcinogenesis: Current landscape and future perspectives. Asian Pacific Journal of Tropical Medicine, 11(3), 186-193.
  • Kang, L., Mao, J., Tao, Y., Song, B., Ma, W., Lu, Y., ..., & Li, L. (2015). Retracted: Micro RNA‐34a suppresses the breast cancer stem cell‐like characteristics by downregulating Notch1 pathway. Cancer Science, 106(6), 700-708. https://doi.org/10.1111/cas.12656
  • Kawaguchi, T., Yan, L., Qi, Q., Peng, X., Gabriel, E.M., Young, J., ... & Takabe, K. (2017). Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Scientific Reports, 7(1), 15945. https://doi.org/10.1038/s41598-017-16112-y
  • Kim, G.T., Lee, S.H., Kim, J.I., & Kim, Y.M. (2014). Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. International Journal of Molecular Medicine, 33(4), 863-869.
  • Kopustinskiene, D.M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as anticancer agents. Nutrients, 12(2), 457.
  • Li, X.J., Ren, Z.J., Tang, J.H., & Yu, Q. (2019). MiR-34a: A potential therapeutic target in human cancer. Cell Death & Disease, 10(3), 193. https://doi.org/10.1038/s41419-019-1446-z
  • Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M.T., Wang, S., ..., & Yin, Y. (2020). Quercetin, inflammation and immunity. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
  • Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2020). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 10(1), 1–8.
  • Misso, G., Di Martino, M.T., De Rosa, G., Farooqi, A.A., Lombardi, A., Campani, V., ..., & Caraglia, M. (2014). miR-34: A new weapon against cancer? Molecular Therapy - Nucleic Acids, 3, e194. https://doi.org/10.1038/mtna.2014.47
  • Muller, P.A., Vousden, K.H., & Norman, J.C. (2011). p53 and its mutants in tumor cell migration and invasion. The Journal of cell biology, 192(2), 209–218. https://doi.org/10.1083/jcb.201009059
  • Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325. https://doi.org/10.1016/j.canlet.2008.03.046
  • O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, 402.
  • Pang, R.T., Leung, C.O., Ye, T.M., Liu, W., Chiu, P.C., Lam, K.K., ..., & Yeung, W.S. (2010). MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis, 31(6), 1037–1044.
  • Rauf, A., Imran, M., Khan, I.A., Ur-Rehman, M., Gilani, S.A., Mehmood, Z., & Mubarak, M.S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research, 32(11), 2109–2130. https://doi.org/10.1002/ptr.6155
  • Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., ..., & Oren, M. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell, 26(5), 731–743. https://doi.org/10.1016/j.molcel.2007.05.017
  • Rhman, M.A., Devnarain, N., Khan, R., & Owira, P.M.O. (2022). Synergism potentiates oxidative antiproliferative effects of naringenin and quercetin in MCF-7 breast cancer cells. Nutrients, 14(16), 3437.
  • Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. (2019). Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants (Basel, Switzerland), 8(5), 137. https://doi.org/10.3390/antiox8050137
  • Siegel, R.L., Miller, K.D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590
  • Tang, J., Ahmad, A., & Sarkar, F.H. (2012). The role of microRNAs in breast cancer migration, invasion and metastasis. International Journal of Molecular Sciences, 13(10), 13414–13437. https://doi.org/10.3390/ijms131013414
  • Tang, S.M., Deng, X.T., Zhou, J., Li, Q.P., Ge, X.X., & Miao, L. (2021). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy, 133, 111017. https://doi.org/10.1016/j.biopha.2020.111017
  • Tao, S.F., He, H.F., & Chen, Q. (2015). Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Molecular and Cellular Biochemistry, 402(1–2), 93–100.
  • Vousden, K.H., & Lane, D.P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8(4), 275–283. https://doi.org/10.1038/nrm2147
  • Wang, W., Sun, C., Mao, L., Ma, P., Liu, F., Yang, J., & Gao, Y. (2021). The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology, 109, 1–15. https://doi.org/10.1016/j.tifs.2021.01.042
  • Zhang, L., Liao, Y., & Tang, L. (2019). MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 53. https://doi.org/10.1186/s13046-019-1059-5
  • Zhang, J.T., Chen, J., Ruan, H.C., Li, F. X., Pang, S., Xu, Y. J., ..., & Wu, X.H. (2021). Microribonucleic Acid-15a-5p alters Adriamycin resistance in breast cancer cells by targeting cell division cycle-associated protein 4. Cancer Management and Research, 13, 8425–8434.
There are 44 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Research Articles
Authors

Çiğdem Güngörmez 0000-0001-7867-5356

Hatice Gumushan Aktas 0000-0002-6650-184X

Zeynep Çelik 0000-0002-2142-4342

Büşra Ergin 0000-0003-0588-619X

Project Number 2022-SİÜTIP-050
Early Pub Date May 26, 2025
Publication Date June 30, 2025
Submission Date March 21, 2025
Acceptance Date April 23, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Güngörmez, Ç., Gumushan Aktas, H., Çelik, Z., Ergin, B. (2025). Quercetin-Mediated Modulation of Tumor Suppressor miR-15a, miR-34a, and p53 Signaling in MCF-7 Breast Cancer Cells. Commagene Journal of Biology, 9(1), 80-85. https://doi.org/10.31594/commagene.1662649