Research Article
BibTex RIS Cite

Mikroplastik ve Bakır Uygulamalarının Domates ve Karalahanada Yaprak Sayısı, Gövde ve Kök Çapı Üzerine Etkileri

Year 2025, Volume: 9 Issue: 2, 179 - 186
https://doi.org/10.31594/commagene.1658960

Abstract

Sulama suyu, gübreler, pestisitler, araçlar ve örtü materyali uygulamaları gibi tarımsal işlemlerden kaynaklanan mikroplastikler ve ağır metaller, tarımsal ekosistemlerde önemli kirleticilerdir. Zararlı etkileri organizmaların ve ekosistemlerin sağlığı için tehdit oluşturmaktadır. Bu çalışmada, mikroplastik ve bakır uygulamalarının domates (Lycopersicum esculentum L.) ve lahana (Brassica oleraceae L. var. acephala DC.) bitkilerinde yaprak sayısı gövde vekök çapı üzerindeki etkilerinin belirlenmesi amaçlanmıştır. Mikroplastikler, örtü malzemesi olarak kullanılan tarımsal malçın makas kullanılarak küçük parçalara (2.5 mm-4 mm) kesilmesiyle elde edilmiştir. %0, %0.5, %1.5 ve %2.5 mikroplastik ile 100 ppm ve 500 ppm konsantrasyonlarında bakır sülfat (CuSO₄) kullanılarak on iki deney seti oluşturulmuştur. Domates ve lahana bitkilerinin yaprak sayısı ve gövde/kök çapları ölçülmüştür. Bulgular, mikroplastik ve bakır (Cu) uygulamalarının domates ve lahana bitkilerinde gövde çapı ve kök çapı üzerinde önemli bir değişikliğe neden olmadığını göstermiştir. Bununla birlikte, yaprak sayısı mikroplastik ve bakır (Cu) uygulamalarına bağlı olarak lahana bitkisinde önemli ölçüde değişirken, domates bitkisinde önemli bir değişim olmamıştır. Lahana bitkisinde en fazla yaprak kontrol grubunda, en az yaprak 500 ppm CuSO₄ + %0.5 mikroplastik uygulanan deney setinde tespit edilmiştir. Mikroplastik ve Cu ayrı ayrı ve birlikte uygulandığında elde edilen bulgular farklılık göstermiştir. Sonuçlar, mikroplastik ve ağır metallerin bitkiler üzerindeki etkilerini farklı koşullarda araştıracak kapsamlı çalışmalara gereksinim olduğunu ortaya koymaktadır.

Ethical Statement

Bu çalışma için etik kurul izni gerekmektedir.

Supporting Institution

Amasya Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FMB-BAP 21-0517 and FMB-BAP 22-0580

Thanks

Bu çalışmada laboratuvar imkânlarından yararlanan Suluova Meslek Yüksekokulu yöneticilerine ve akademisyenlerine ve Amasya Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine FMB-BAP 21-0517 ve FMB-BAP 22-0580 projeleriyle çalışmamıza maddi destek sağladıkları için teşekkürlerimizi sunarız.

References

  • Adamczewska-Sowińska, K., Bykowy, J., & Jaworska, J. (2025). Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.). Agriculture, 15(2), 212. https://doi.org/10.3390/agriculture15020212
  • Akyıldız, M. & Karataş, B. (2018). Adana şehir merkezindeki topraklarda ağır metal kirliliğinin araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 199-214. https://doi.org/10.21605/cukurovaummfd.509559
  • Alibas, İ., & Okursoy, R. (2012). Karalahana (Brassica oleracea L. var. acephala), Pazı (Beta vulgaris L. var. cicla) ve Ispanak (Spinacia oleracea L.) yapraklarının bazı teknik özellikleri. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(1), 39-48.
  • Allen, S., Allen, D., Phoenix, V.R., Le Roux, G., Durántez Jiménez, P., Simonneau, A., ... & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5), 339-344. https://doi.org/10.1038/s41561-019-0335-5
  • Ambrosini, V.G., Rosa, D.J., Prado, J.P.C., Borghezan, M., de Melo, G.W.B., de Sousa Soares, C.R.F., ... & Brunetto, G. (2015). Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270-280. https://doi.org/10.1016/j.plaphy.2015.08.012
  • Apaydın, A. (2005). Investigation of soil pollution orijinated from industries: Samsun-Tekkeköy Region. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Arduini, I., Godbold, D.L., & Onnis, A. (1995). Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiology, 15(6), 411-415. https://doi.org/10.1093/treephys/15.6.411
  • Ayaz, F.A., Hayırlıoglu-Ayaz, S., Alpay-Karaoglu, S., Grúz, J., Valentová, K., Ulrichová, J., & Strnad, M. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107(1), 19-25. https://doi.org/10.1016/j.foodchem.2007.07.003
  • Azeem, I., Adeel, M., Ahmad, M.A., Shakoor, N., Jiangcuo, G.D., Azeem, K., ... & Rui, Y. (2021). Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials, 11(11), 2935. https://doi.org/10.3390/nano11112935
  • Bakir, A., Rowland, S.J., & Thompson, R.C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), 2782-2789. https://doi.org/10.1016/j.marpolbul.2012.09.010
  • Bolat, İ., & Kara, Ö. (2017). Plant nutrients: sources, functions, deficiencies and redundancy. Bartın Orman Fakültesi Dergisi, 19(1), 218-228. http://doi.org/10.24011/barofd.251313
  • Boots, B., Russell, C.W., & Green, D.S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science & Technology, 53(19), 11496-11506. https://doi.org/10.1021/acs.est.9b03304
  • Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P., & Vijver, M.G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774-781. https://doi.org/10.1016/j.chemosphere.2019.03.163
  • Cai, S., Xiong, Z., Li, L., Li, M., Zhang, L., Liu, C., & Xu, Z. (2014). Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. Ecotoxicology, 23, 76-91. https://doi.org/10.1007/s10646-013-1153-y
  • Chia, R.W., Lee, J.Y., Kim, H., & Jang, J. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19(6), 4211-4224. https://doi.org/10.1007/s10311-021-01297-6
  • Colzi, I., Renna, L., Bianchi, E., Castellani, M.B., Coppi, A., Pignattelli, S., ... & Gonnelli, C. (2022). Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, 127238. https://doi.org/10.1016/j.jhazmat.2021.127238
  • de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M.C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656-9665. https://doi.org/10.1021/acs.est.8b02212
  • de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., ... & Rillig, M.C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044-6052. https://doi.org/10.1021/acs.est.9b01339
  • Desai, B.H. (2015). 14. United Nations Environment Program (UNEP). https://doi.org/10.1093/yiel/yvw063
  • Durmuş, M., Yetgin, Ö., Abed, M.M., Haji, E.K., & Akcay, K. (2018). Domates bitkisi, besin içeriği ve sağlık açısından değerlendirmesi. International Journal of Life Sciences and Biotechnology, 1(2), 59-74. https://doi.org/10.38001/ijlsb.482443
  • Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, 124482. https://doi.org/10.1016/j.chemosphere.2019.124482
  • Guo, Y., Wu, R., Zhang, H., Guo, C., Wu, L., & Xu, J. (2025). Distribution of microplastics in the soils of a petrochemical industrial region in China: Ecological and Human Health Risks. Environmental Geochemistry and Health, 47(1), 1-16. https://doi.org/10.1007/s10653-024-02324-5
  • Hasan, M.M. & Jho, E.H. (2023). Effect of different types and shapes of microplastics on the growth of lettuce. Chemosphere, 339, 139660. https://doi.org/10.1016/j.chemosphere.2023.139660
  • Ikhajiagbe, B., Omoregie, G.O., Adama, S.O., & Esheya, K.U. (2023). Growth responses of Celosia argentea L. in soils polluted with microplastics. bioRxiv, 2023-01. https://doi.org/10.1101/2023.01.07.523084
  • Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A.B., & Schaeffer, S.M. (2022). Activities of microplastics (MPs) in agricultural soil: a review of MPs pollution from the perspective of agricultural ecosystems. Journal of Agricultural and Food Chemistry, 70(14), 4182-4201. https://doi.org/10.1021/acs.jafc.1c07849
  • Kajal, S., & Thakur, S. (2024). Coexistence of microplastics and heavy metals in soil: Occurrence, transport, key interactions and effect on plants. Environmental Research, 119960. https://doi.org/10.1016/j.envres.2024.119960
  • Khalid, N., Aqeel, M., & Noman, A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653. https://doi.org/10.1016/j.envpol.2020.115653
  • Koelmans, A.A., Redondo-Hasselerharm, P.E., Nor, N.H.M., de Ruijter, V.N., Mintenig, S.M., & Kooi, M. (2022). Risk assessment of microplastic particles. Nature Reviews Materials, 7(2), 138-152. https://doi.org/10.1038/s41578-021-00411-y
  • Kolbert, Z., Pető, A., Lehotai, N., Feigl, G., & Erdei, L. (2012). Long-term copper (Cu 2+) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regulation, 68, 151-159. https://doi.org/10.1007/s10725-012-9701-7
  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J., Yin, N., ... & Zhang, Y. (2020a). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929-937. https://doi.org/10.1038/s41893-020-0567-9
  • Li, Z., Li, Q., Li, R., Zhao, Y., Geng, J., & Wang, G. (2020b). Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research, 27, 30306-30314. https://doi.org/10.1007/s11356-020-09349-0
  • Li, G., Zhao, X., Iqbal, B., Zhao, X., Liu, J., Javed, Q., & Du, D. (2023). The effect of soil microplastics on Oryza sativa L. root growth traits under alien plant invasion. Frontiers in Ecology and Evolution, 11, 1172093. https://doi.org/10.3389/fevo.2023.1172093
  • Lin, Z., Jin, T., Zou, T., Xu, L., Xi, B., Xu, D., ... & Fei, J. (2022). Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environmental Pollution, 304, 119159. https://doi.org/10.1016/j.envpol.2022.119159
  • Marques, D.M., Veroneze Júnior, V., da Silva, A.B., Mantovani, J.R., Magalhães, P.C., & de Souza, T.C. (2018). Copper toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L. (Caesalpinioideae). Water, Air, & Soil Pollution, 229, 1-14. https://doi.org/10.1007/s11270-018-3769-2
  • Megha, K.B., Anvitha, D., Parvathi, S., Neeraj, A., Sonia, J., & Mohanan, P.V. (2025). Environmental impact of microplastics and potential health hazards. Critical Reviews in Biotechnology, 45(1), 97-127. https://doi.org/10.1080/07388551.2024.2344572
  • Meng, F., Yang, X., Riksen, M., Xu, M., & Geissen, V. (2021). Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 755, 142516. https://doi.org/10.1016/j.scitotenv.2020.142516
  • Napper, I.E., Davies, B.F., Clifford, H., Elvin, S., Koldewey, H.J., Mayewski, P.A., ... & Thompson, R.C. (2020). Reaching new heights in plastic pollution-preliminary findings of microplastics on Mount Everest. One Earth, 3(5), 621-630. https://doi.org/10.1016/j.oneear.2020.10.020
  • Nasseri, S., & Azizi, N. (2022). Occurrence and fate of microplastics in freshwater resources. In Microplastic Pollution: Environmental Occurrence and Treatment Technologies Cham: Springer International Publishing, 187-200. https://doi.org/10.1007/978-3-030-89220-3_9
  • Ofoezie, E.I., Eludoyin, A.O., Udeh, E.B., Onanuga, M.Y., Salami, O.O., & Adebayo, A.A. (2022). Climate, urbanization and environmental pollution in West Africa. Sustainability, 14(23), 15602. https://doi.org/10.3390/su142315602
  • Okcu, M., Tozlu, E., Metin Kumlay, A., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alınteri Journal of Agriculture Science, 17(2), 14-26.
  • Peng, X., Chen, M., Chen, S., Dasgupta, S., Xu, H., Ta, K., ... & Bai, S. (2018). Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspectives Letters, 9(1), 1-5. https://doi.org/10.7185/geochemlet.1829
  • Peralta, I.E., & Spooner, D.M. (2007). History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2. Tomato, Enfield, United States, Science Publishers, 1-27.
  • Pinto, A.C.R., Demattê, M.E.S.P., Creste, S., & Barbosa, J.C. (2011). Seed and seedling surface-sterilization for in vitro culture of Tillandsia gardneri (Bromeliaceae). VII International Symposium on in Vitro Culture and Horticultural Breeding September 18-22, 2011, Ghent, Belgium, pp. 383-389. https://doi.org/10.17660/ActaHortic.2012.961.50
  • Pinto-Poblete, A., Retamal-Salgado, J., Zapata, N., Sierra-Almeida, A., & Schoebitz, M. (2023). Impact of polyethylene microplastics and copper nanoparticles: Responses of soil microbiological properties and strawberry growth. Applied Soil Ecology, 184, 104773. https://doi.org/10.1016/j.apsoil.2022.104773
  • Qi, Y., Yang, X., Pelaez, A.M., Lwanga, E.H., Beriot, N., Gertsen, H., ... & Geissen, V. (2018). Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048-1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
  • Ren, X., Tang, J., Wang, L., & Liu, Q. (2021). Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil, 462, 561-576. https://doi.org/10.1007/s11104-021-04869-1
  • Rezaie, A., & Forghani, S. (2022). A Novel Method for Removal of Hazardous Microplastics from Water Using Magnets. Journal of Environmental Health and Sustainable Development. 7(4), 1775-6. https://doi.org/10.18502/jehsd.v7i4.11428
  • Rillig, M.C. (2012). Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46(12), 6453-6454. https://doi.org/10.1021/es302011r
  • Rillig, M.C., Lehmann, A., de Souza Machado, A.A., & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3), 1066-1070. https://doi.org/10.1111/nph.15794
  • Sharma, R.K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2), 301-313.
  • Singh, B., & Singh, K. (2022). Microplastics contamination in soil affects growth and root nodulation of fenugreek (Trigonella foenum‐graecum L.) and 16 s rRNA sequencing of rhizosphere soil. Journal of Hazardous Materials Advances, 7, 100146. https://doi.org/10.1016/j.hazadv.2022.100146
  • Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M.C., & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050
  • Ullah, R., Tsui, M.T.K., Chen, H., Chow, A., Williams, C., & Ligaba‐Osena, A. (2021). Microplastics interaction with terrestrial plants and their impacts on agriculture. Journal of Environmental Quality, 50(5), 1024-1041. https://doi.org/10.1002/jeq2.20264
  • Waldman, W.R., & Rillig, M.C. (2020). Microplastic research should embrace the complexity of secondary particles. Environmental Science & Technology, 54(13), 7751-7753. https://doi.org/10.1021/acs.est.0c02194
  • Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., ... & Li, Z. (2019). The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Advances in Agronomy, 153, 121-173. https://doi.org/10.1016/bs.agron.2018.08.003
  • Wu, P., Cai, Z., Jin, H., & Tang, Y. (2019). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650, 671-678. https://doi.org/10.1016/j.scitotenv.2018.09.049
  • Wu, X., Liu, Y., Yin, S., Xiao, K., Xiong, Q., Bian, S., ... & Yang, J. (2020). Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environmental Pollution, 266, 115159. https://doi.org/10.1016/j.envpol.2020.115159
  • Yıldırım, N. (2022). Possible effects of heavy metal (Cu) and sitimulated acid rain stress on mRNA expression levels of FAD2 gene responsible for linoleic acid transduction of oleic acid and some ecophysiological traits in safflower (Carthamus tinctorius L.)”. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145-156. https://doi.org/10.1590/S1677-4202005000100012
  • Yu, H., Zhang, Y., Tan, W., & Zhang, Z. (2022). Microplastics as an emerging environmental pollutant in agricultural soils: effects on ecosystems and human health. Frontiers in Environmental Science, 10, 855292. https://doi.org/10.3389/fenvs.2022.855292
  • Yücel Tartan, G. (2023). The determination of the effect of microplastic pollution on plant growth and cadmium (Cd) accumulation in Lactuca sativa L. (lettuce). Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Zhang, S., Han, B., Sun, Y., & Wang, F. (2020). Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 388, 121775. https://doi.org/10.1016/j.jhazmat.2019.121775
  • Zhang, S., Gao, W., Cai, K., Liu, T., & Wang, X. (2022). Effects of microplastics on growth and physiological characteristics of tobacco (Nicotiana tabacum L.). Agronomy, 12(11), 2692. https://doi.org/10.3390/agronomy12112692
  • Zhou, Y., Liu, X., & Wang, J. (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Science of the Total Environment, 694, 133798. https://doi.org/10.1016/j.scitotenv.2019.133798

The Effects of Microplastic and Copper Treatments on the Number of Leaves, Stem, and Root Diameters in Tomato and Kale

Year 2025, Volume: 9 Issue: 2, 179 - 186
https://doi.org/10.31594/commagene.1658960

Abstract

Microplastics and heavy metals, which originated from irrigation water, fertilizers, pesticides, vehicles, and agricultural processes such as cover material treatments, are significant pollutants in agricultural ecosystems. Their harmful effects pose a threat to the health of organisms and ecosystems. This study aimed to determine the effects of microplastic and copper treatments on the number of leaves stem and root diameter in tomato Lycopersicum esculentum L.) and kale (Brassica oleraceae L. var. acephala DC.) plants. Microplastics were obtained by cutting agricultural mulch, used as a cover material, into small pieces (2.5 mm-4 mm) using scissors. Twelve experimental sets were created using microplastic concentrations of 0%, 0.5%, 1.5%, and 2.5%, along with copper sulphate (CuSO₄) at concentrations of 100 ppm and 500 ppm. The number of leaves, the stem and root diameters of the plants were measured. While the number of leaves, stem and root diameters in tomato plants, as well as the stem and root diameters in kale plants, did not significantly vary with microplastic and copper (Cu) treatments, significant differences were observed in the number of leaves in kale plants. The maximum and minimum leaf numbers were observed in the control group and the experimental set where 500 ppm CuSO₄ + 0.5% microplastic was applied, respectively. Different results emerged when microplastics and Cu were applied separately and together. These findings highlight the need for future studies that explore the long-term effects of microplastics and heavy metals on various plant species under different environmental conditions and using multiple physiological and biochemical parameters.

Ethical Statement

Ethics committee approval is not required for this study.

Supporting Institution

Amasya University Scientific Research Projects Coordination Unit

Project Number

FMB-BAP 21-0517 and FMB-BAP 22-0580

Thanks

The authors also wish to thank the administrators and academicians of Suluova Vocational School, whose laboratory facilities were used in this study, and Amasya University Scientific Research Projects Coordination Unit for its financial support to our study with the projects of FMB-BAP 21-0517 and FMB-BAP 22-0580.

References

  • Adamczewska-Sowińska, K., Bykowy, J., & Jaworska, J. (2025). Effect of Biodegradable Mulch and Different Synthetic Mulches on Growth and Yield of Field-Grown Small-Fruited Tomato (Lycopersicon esculentum Mill.). Agriculture, 15(2), 212. https://doi.org/10.3390/agriculture15020212
  • Akyıldız, M. & Karataş, B. (2018). Adana şehir merkezindeki topraklarda ağır metal kirliliğinin araştırılması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 199-214. https://doi.org/10.21605/cukurovaummfd.509559
  • Alibas, İ., & Okursoy, R. (2012). Karalahana (Brassica oleracea L. var. acephala), Pazı (Beta vulgaris L. var. cicla) ve Ispanak (Spinacia oleracea L.) yapraklarının bazı teknik özellikleri. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(1), 39-48.
  • Allen, S., Allen, D., Phoenix, V.R., Le Roux, G., Durántez Jiménez, P., Simonneau, A., ... & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5), 339-344. https://doi.org/10.1038/s41561-019-0335-5
  • Ambrosini, V.G., Rosa, D.J., Prado, J.P.C., Borghezan, M., de Melo, G.W.B., de Sousa Soares, C.R.F., ... & Brunetto, G. (2015). Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270-280. https://doi.org/10.1016/j.plaphy.2015.08.012
  • Apaydın, A. (2005). Investigation of soil pollution orijinated from industries: Samsun-Tekkeköy Region. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Arduini, I., Godbold, D.L., & Onnis, A. (1995). Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiology, 15(6), 411-415. https://doi.org/10.1093/treephys/15.6.411
  • Ayaz, F.A., Hayırlıoglu-Ayaz, S., Alpay-Karaoglu, S., Grúz, J., Valentová, K., Ulrichová, J., & Strnad, M. (2008). Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chemistry, 107(1), 19-25. https://doi.org/10.1016/j.foodchem.2007.07.003
  • Azeem, I., Adeel, M., Ahmad, M.A., Shakoor, N., Jiangcuo, G.D., Azeem, K., ... & Rui, Y. (2021). Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials, 11(11), 2935. https://doi.org/10.3390/nano11112935
  • Bakir, A., Rowland, S.J., & Thompson, R.C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), 2782-2789. https://doi.org/10.1016/j.marpolbul.2012.09.010
  • Bolat, İ., & Kara, Ö. (2017). Plant nutrients: sources, functions, deficiencies and redundancy. Bartın Orman Fakültesi Dergisi, 19(1), 218-228. http://doi.org/10.24011/barofd.251313
  • Boots, B., Russell, C.W., & Green, D.S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science & Technology, 53(19), 11496-11506. https://doi.org/10.1021/acs.est.9b03304
  • Bosker, T., Bouwman, L.J., Brun, N.R., Behrens, P., & Vijver, M.G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774-781. https://doi.org/10.1016/j.chemosphere.2019.03.163
  • Cai, S., Xiong, Z., Li, L., Li, M., Zhang, L., Liu, C., & Xu, Z. (2014). Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. Ecotoxicology, 23, 76-91. https://doi.org/10.1007/s10646-013-1153-y
  • Chia, R.W., Lee, J.Y., Kim, H., & Jang, J. (2021). Microplastic pollution in soil and groundwater: a review. Environmental Chemistry Letters, 19(6), 4211-4224. https://doi.org/10.1007/s10311-021-01297-6
  • Colzi, I., Renna, L., Bianchi, E., Castellani, M.B., Coppi, A., Pignattelli, S., ... & Gonnelli, C. (2022). Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423, 127238. https://doi.org/10.1016/j.jhazmat.2021.127238
  • de Souza Machado, A.A., Lau, C.W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M.C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656-9665. https://doi.org/10.1021/acs.est.8b02212
  • de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., ... & Rillig, M.C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044-6052. https://doi.org/10.1021/acs.est.9b01339
  • Desai, B.H. (2015). 14. United Nations Environment Program (UNEP). https://doi.org/10.1093/yiel/yvw063
  • Durmuş, M., Yetgin, Ö., Abed, M.M., Haji, E.K., & Akcay, K. (2018). Domates bitkisi, besin içeriği ve sağlık açısından değerlendirmesi. International Journal of Life Sciences and Biotechnology, 1(2), 59-74. https://doi.org/10.38001/ijlsb.482443
  • Gao, M., Liu, Y., & Song, Z. (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237, 124482. https://doi.org/10.1016/j.chemosphere.2019.124482
  • Guo, Y., Wu, R., Zhang, H., Guo, C., Wu, L., & Xu, J. (2025). Distribution of microplastics in the soils of a petrochemical industrial region in China: Ecological and Human Health Risks. Environmental Geochemistry and Health, 47(1), 1-16. https://doi.org/10.1007/s10653-024-02324-5
  • Hasan, M.M. & Jho, E.H. (2023). Effect of different types and shapes of microplastics on the growth of lettuce. Chemosphere, 339, 139660. https://doi.org/10.1016/j.chemosphere.2023.139660
  • Ikhajiagbe, B., Omoregie, G.O., Adama, S.O., & Esheya, K.U. (2023). Growth responses of Celosia argentea L. in soils polluted with microplastics. bioRxiv, 2023-01. https://doi.org/10.1101/2023.01.07.523084
  • Jin, T., Tang, J., Lyu, H., Wang, L., Gillmore, A.B., & Schaeffer, S.M. (2022). Activities of microplastics (MPs) in agricultural soil: a review of MPs pollution from the perspective of agricultural ecosystems. Journal of Agricultural and Food Chemistry, 70(14), 4182-4201. https://doi.org/10.1021/acs.jafc.1c07849
  • Kajal, S., & Thakur, S. (2024). Coexistence of microplastics and heavy metals in soil: Occurrence, transport, key interactions and effect on plants. Environmental Research, 119960. https://doi.org/10.1016/j.envres.2024.119960
  • Khalid, N., Aqeel, M., & Noman, A. (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653. https://doi.org/10.1016/j.envpol.2020.115653
  • Koelmans, A.A., Redondo-Hasselerharm, P.E., Nor, N.H.M., de Ruijter, V.N., Mintenig, S.M., & Kooi, M. (2022). Risk assessment of microplastic particles. Nature Reviews Materials, 7(2), 138-152. https://doi.org/10.1038/s41578-021-00411-y
  • Kolbert, Z., Pető, A., Lehotai, N., Feigl, G., & Erdei, L. (2012). Long-term copper (Cu 2+) exposure impacts on auxin, nitric oxide (NO) metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regulation, 68, 151-159. https://doi.org/10.1007/s10725-012-9701-7
  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J., Yin, N., ... & Zhang, Y. (2020a). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929-937. https://doi.org/10.1038/s41893-020-0567-9
  • Li, Z., Li, Q., Li, R., Zhao, Y., Geng, J., & Wang, G. (2020b). Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research, 27, 30306-30314. https://doi.org/10.1007/s11356-020-09349-0
  • Li, G., Zhao, X., Iqbal, B., Zhao, X., Liu, J., Javed, Q., & Du, D. (2023). The effect of soil microplastics on Oryza sativa L. root growth traits under alien plant invasion. Frontiers in Ecology and Evolution, 11, 1172093. https://doi.org/10.3389/fevo.2023.1172093
  • Lin, Z., Jin, T., Zou, T., Xu, L., Xi, B., Xu, D., ... & Fei, J. (2022). Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environmental Pollution, 304, 119159. https://doi.org/10.1016/j.envpol.2022.119159
  • Marques, D.M., Veroneze Júnior, V., da Silva, A.B., Mantovani, J.R., Magalhães, P.C., & de Souza, T.C. (2018). Copper toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L. (Caesalpinioideae). Water, Air, & Soil Pollution, 229, 1-14. https://doi.org/10.1007/s11270-018-3769-2
  • Megha, K.B., Anvitha, D., Parvathi, S., Neeraj, A., Sonia, J., & Mohanan, P.V. (2025). Environmental impact of microplastics and potential health hazards. Critical Reviews in Biotechnology, 45(1), 97-127. https://doi.org/10.1080/07388551.2024.2344572
  • Meng, F., Yang, X., Riksen, M., Xu, M., & Geissen, V. (2021). Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 755, 142516. https://doi.org/10.1016/j.scitotenv.2020.142516
  • Napper, I.E., Davies, B.F., Clifford, H., Elvin, S., Koldewey, H.J., Mayewski, P.A., ... & Thompson, R.C. (2020). Reaching new heights in plastic pollution-preliminary findings of microplastics on Mount Everest. One Earth, 3(5), 621-630. https://doi.org/10.1016/j.oneear.2020.10.020
  • Nasseri, S., & Azizi, N. (2022). Occurrence and fate of microplastics in freshwater resources. In Microplastic Pollution: Environmental Occurrence and Treatment Technologies Cham: Springer International Publishing, 187-200. https://doi.org/10.1007/978-3-030-89220-3_9
  • Ofoezie, E.I., Eludoyin, A.O., Udeh, E.B., Onanuga, M.Y., Salami, O.O., & Adebayo, A.A. (2022). Climate, urbanization and environmental pollution in West Africa. Sustainability, 14(23), 15602. https://doi.org/10.3390/su142315602
  • Okcu, M., Tozlu, E., Metin Kumlay, A., & Pehluvan, M. (2009). Ağır metallerin bitkiler üzerine etkileri. Alınteri Journal of Agriculture Science, 17(2), 14-26.
  • Peng, X., Chen, M., Chen, S., Dasgupta, S., Xu, H., Ta, K., ... & Bai, S. (2018). Microplastics contaminate the deepest part of the world’s ocean. Geochemical Perspectives Letters, 9(1), 1-5. https://doi.org/10.7185/geochemlet.1829
  • Peralta, I.E., & Spooner, D.M. (2007). History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2. Tomato, Enfield, United States, Science Publishers, 1-27.
  • Pinto, A.C.R., Demattê, M.E.S.P., Creste, S., & Barbosa, J.C. (2011). Seed and seedling surface-sterilization for in vitro culture of Tillandsia gardneri (Bromeliaceae). VII International Symposium on in Vitro Culture and Horticultural Breeding September 18-22, 2011, Ghent, Belgium, pp. 383-389. https://doi.org/10.17660/ActaHortic.2012.961.50
  • Pinto-Poblete, A., Retamal-Salgado, J., Zapata, N., Sierra-Almeida, A., & Schoebitz, M. (2023). Impact of polyethylene microplastics and copper nanoparticles: Responses of soil microbiological properties and strawberry growth. Applied Soil Ecology, 184, 104773. https://doi.org/10.1016/j.apsoil.2022.104773
  • Qi, Y., Yang, X., Pelaez, A.M., Lwanga, E.H., Beriot, N., Gertsen, H., ... & Geissen, V. (2018). Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048-1056. https://doi.org/10.1016/j.scitotenv.2018.07.229
  • Ren, X., Tang, J., Wang, L., & Liu, Q. (2021). Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant and Soil, 462, 561-576. https://doi.org/10.1007/s11104-021-04869-1
  • Rezaie, A., & Forghani, S. (2022). A Novel Method for Removal of Hazardous Microplastics from Water Using Magnets. Journal of Environmental Health and Sustainable Development. 7(4), 1775-6. https://doi.org/10.18502/jehsd.v7i4.11428
  • Rillig, M.C. (2012). Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46(12), 6453-6454. https://doi.org/10.1021/es302011r
  • Rillig, M.C., Lehmann, A., de Souza Machado, A.A., & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3), 1066-1070. https://doi.org/10.1111/nph.15794
  • Sharma, R.K., & Agrawal, M. (2005). Biological effects of heavy metals: an overview. Journal of Environmental Biology, 26(2), 301-313.
  • Singh, B., & Singh, K. (2022). Microplastics contamination in soil affects growth and root nodulation of fenugreek (Trigonella foenum‐graecum L.) and 16 s rRNA sequencing of rhizosphere soil. Journal of Hazardous Materials Advances, 7, 100146. https://doi.org/10.1016/j.hazadv.2022.100146
  • Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M.C., & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050
  • Ullah, R., Tsui, M.T.K., Chen, H., Chow, A., Williams, C., & Ligaba‐Osena, A. (2021). Microplastics interaction with terrestrial plants and their impacts on agriculture. Journal of Environmental Quality, 50(5), 1024-1041. https://doi.org/10.1002/jeq2.20264
  • Waldman, W.R., & Rillig, M.C. (2020). Microplastic research should embrace the complexity of secondary particles. Environmental Science & Technology, 54(13), 7751-7753. https://doi.org/10.1021/acs.est.0c02194
  • Wang, X., Fan, J., Xing, Y., Xu, G., Wang, H., Deng, J., ... & Li, Z. (2019). The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Advances in Agronomy, 153, 121-173. https://doi.org/10.1016/bs.agron.2018.08.003
  • Wu, P., Cai, Z., Jin, H., & Tang, Y. (2019). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650, 671-678. https://doi.org/10.1016/j.scitotenv.2018.09.049
  • Wu, X., Liu, Y., Yin, S., Xiao, K., Xiong, Q., Bian, S., ... & Yang, J. (2020). Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. Environmental Pollution, 266, 115159. https://doi.org/10.1016/j.envpol.2020.115159
  • Yıldırım, N. (2022). Possible effects of heavy metal (Cu) and sitimulated acid rain stress on mRNA expression levels of FAD2 gene responsible for linoleic acid transduction of oleic acid and some ecophysiological traits in safflower (Carthamus tinctorius L.)”. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145-156. https://doi.org/10.1590/S1677-4202005000100012
  • Yu, H., Zhang, Y., Tan, W., & Zhang, Z. (2022). Microplastics as an emerging environmental pollutant in agricultural soils: effects on ecosystems and human health. Frontiers in Environmental Science, 10, 855292. https://doi.org/10.3389/fenvs.2022.855292
  • Yücel Tartan, G. (2023). The determination of the effect of microplastic pollution on plant growth and cadmium (Cd) accumulation in Lactuca sativa L. (lettuce). Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/giris.jsp
  • Zhang, S., Han, B., Sun, Y., & Wang, F. (2020). Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 388, 121775. https://doi.org/10.1016/j.jhazmat.2019.121775
  • Zhang, S., Gao, W., Cai, K., Liu, T., & Wang, X. (2022). Effects of microplastics on growth and physiological characteristics of tobacco (Nicotiana tabacum L.). Agronomy, 12(11), 2692. https://doi.org/10.3390/agronomy12112692
  • Zhou, Y., Liu, X., & Wang, J. (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Science of the Total Environment, 694, 133798. https://doi.org/10.1016/j.scitotenv.2019.133798
There are 64 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Research Articles
Authors

Büşra Çil 0000-0003-0593-6820

Neslihan Karavin 0000-0002-7603-3832

Project Number FMB-BAP 21-0517 and FMB-BAP 22-0580
Early Pub Date September 30, 2025
Publication Date October 15, 2025
Submission Date March 16, 2025
Acceptance Date September 9, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Çil, B., & Karavin, N. (2025). The Effects of Microplastic and Copper Treatments on the Number of Leaves, Stem, and Root Diameters in Tomato and Kale. Commagene Journal of Biology, 9(2), 179-186. https://doi.org/10.31594/commagene.1658960