Research Article
BibTex RIS Cite

Kuraklık Stresi Altında Farklı Priming Uygulamalarının Buğdayda Çimlenme ve Fide Büyümesi Üzerine Etkileri

Year 2022, , 303 - 311, 28.12.2022
https://doi.org/10.33202/comuagri.1149497

Abstract

Buğday (Triticum aestivum L.), kurak alanlarda yaygın olarak yetiştirilen bir tarım ürünüdür. Ancak kuraklık, dünya tarım alanlarında bitkisel üretim için en sınırlayıcı çevresel stres faktörlerinden biridir. Priming, çimlenmeden önce metabolik süreçleri iyileştirmek için tohum hidrasyonu ve kurutmayı içeren fizyolojik bir tekniktir. Bu çalışmanın amacı dört farklı priming uygulamasının (hormo-priming (gibberellik asit, GA3), redoks priming (hidrojen peroksit, H2O2), ozmo-priming (polietilen glikol, PEG) ve termo-priming (38oC)) kuraklık stresi altındaki yerel bir ekmeklik buğday çeşidinin (cv. Ekiz) çimlenme yüzdesi, sürgün-kök uzunluğu, toplam klorofil içeriği (SPAD), bağıl su içeriği (BSİ), spesifik yaprak alanı (SYA) ve H2O2 miktarı üzerine etkilerini belirlemektir. Kuraklık stresi, H2O2 içeriğini arttırırken tohum çimlenmesini, sürgün-kök uzunluklarını, SYA, SPAD ve BSİ'yi önemli ölçüde azaltmıştır. Termo-priming uygulamaları, kontrol bitkilerine kıyasla kuraklığın klorofil miktarı ve çimlenme üzerindeki olumsuz etkilerini tamamen iyileştirmiştir. Bununla birlikte, sürgün-kök uzunlukları, kontrol bitkilerinin sadece yarısı düzeyinde iyileşmiştir. Kuraklık stresi tohum çimlenmesini %14 oranında azaltırken, hormo-priming uygulaması tüm tohumların çimlenmesini sağlamıştır. Diğer priming uygulamalarının aksine, hormo-priming ve ozmo-priming uygulamaları BSİ'yi arttırmıştır. Sonuç olarak, kuraklık stresine dayanıklılıkta cv. Ekiz için termo-priming ve ozmo-priming uygulamaları diğer priming uygulamalarından daha etkili olduğu bulunmuştur.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y., Suyu, J., Tian, Z., Jiang, D., Sinider, J. L., Dai, T., 2018. Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany. 145: 12-20.
  • Acar, O., Yıldız, M. T., Günay, E., Baltacıer, G., 2020. Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. Anadolu Tarım Bilimleri Dergisi. 35(3): 446-455.
  • Aghanejad, M., Mahfoozi, S., Sharghi, Y., 2015. Effects of late-season drought stress on some physiological traits, yield, and yield components of wheat genotypes. In Biological Forum. 7(1): 1426).
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Zhu, Y., 2015. Rising temperatures reduce global wheat production. Nature Climate Change. 5(2): 143-147.
  • Balkan, A., 2012. Effect of artificial drought stress on seed quality of bread wheat. Iranian Journal of Plant Physiology. 2(2): 403-412.
  • Bradford, K. J., 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort. Sci. 21(5):1105- 1112.
  • Cetinel, A. H. S., Yalcinkaya, T., Akyol, T. Y., Gokce, A., Turkan, I., 2021. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. Plant Physiology and Biochemistry. 167: 321-336.
  • Cheeseman, J. M., 2006. Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany. 57(10): 2435-2444.
  • Demirbaş, S., Balkan, A., 2018. Tuz stresi koşullarında bazı tritikale çeşitlerinin hidrojen peroksit ön uygulamasına tepkileri. Tekirdağ Ziraat Fakültesi Dergisi. 15(2): 5-13.
  • Elmas, T., Acar, O., 2021. The Effects of some seed priming treatments on germination and seedling development in wheat. International Journal of Scientific and Technological Research. 7 (5): 1.
  • Gençtan, A. B. T., 2013. Ekmeklik buğdayda (Triticum aestivum L.) osmotik stresin çimlenme ve erken fide gelişimi üzerine etkisi. Tekirdağ Ziraat Fakültesi Dergisi. 10(2): 44-52.
  • Ghobadi, M., Abnavi, M. S., Honarmand, S. J., Ghobadi, M. E., Mohammadi, G. R., 2012. Effect of hormonal priming (GA3) and osmopriming on behavior of seed germination in wheat (Triticum aestivum L.). Journal of Agricultural Science. 9(4).
  • Guo, X., Zhi, W., Feng, Y., Zhou, G., Zhu, G., 2022. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. Plos one. 17(2).
  • Jisha, K. C., Vijayakumari, K., Puthur, J. T., 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum. 35(5): 1381-1396.
  • Kumar, D., Yusuf, M. A., Singh, P., Sardar, M., Sarin, N. B., 2014. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol. 4(8): 1108.
  • Kumar, M., Kesawat, M. S., Ali, A., Lee, S. C., Gill, S. S., Kim, H. U., 2019. Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants. 8(12): 592.
  • Liaqat, N., Liaqat, A., Ali, M., Qayyum, Z., Amir, R., Siddique, R., Budak, H., 2020. Wheat genomics and genome editing. In Climate Change and Food Security with Emphasis on Wheat. Academic Press. 331-346.
  • Lugojan, C., Ciulca, S., 2011. Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology. 15(2): 173-177.
  • Maroufi, K., Farahani, H. A., Moradi, O., 2011. Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Advances in Environmental Biology. 3659-3664.
  • Michel, B. E., Kaufmann, M. R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51(5): 914-916.
  • Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M. U., Shabbir, I., 2013. Seed priming a technique. International Journal of Agriculture and Crop Sciences. 6(20): 1373.
  • Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., Bukhov, N. G., 2010. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology. 57(1): 87-95.
  • Paparella S, Araujo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34: 1281–1293.
  • Peryea, F. J., Kammereck, R., 1997. Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air, and Soil Pollution. 93(1): 243-254.
  • Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., Ahmad, S., 2019. Methods of seed priming. In Priming and pretreatment of seeds and seedlings (pp. 1-10). Springer, Singapore.
  • Siddique, M. R. B., Hamid, A. I. M. S., Islam, M. S., 2000. Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica. 41: 35-39.
  • Singh, N., Mishra, A., Jha, B., 2014. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Marine biotechnology. 16(3): 321-332.
  • Smart, R., E., Bingham, G. E., 1974. Rapid estimates of relative water content. Plant Physiology. 53(2): 258-260.
  • Tezcan, A., Aslan, G. E., Kaman, H., 2019. Evaluation of drought stress on the chlorophyll content of the plants: a review of the solanaceae family. Feb-Fresenıus Environmental Bulletin. 28(6): 4636-4641.
  • Wang, X., Cai, J., Liu, F., Dai, T., Cao, W., Wollenweber, B., Jiang, D., 2014. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry.74:185-192.
  • Wilson, P. J., Thompson, K. E. N., Hodgson, J. G., 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. The New Phytologist. 143(1): 155-162.
  • Yalçın, E., 2018. Ekosistemlerde yaprağın ekolojik fonksiyonları. Black Sea Journal of Engineering and Science. 1(2): 68-82.
  • Zhang, X., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W., Jiang, D., 2016. Physiological and transcriptional analyses of induced post-anthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany. 131: 181-189.

Effects of Different Priming Treatments on Germination and Seedling Growth of Wheat under Drought Stress

Year 2022, , 303 - 311, 28.12.2022
https://doi.org/10.33202/comuagri.1149497

Abstract

Wheat (Triticum aestivum L.) is a widely cultivated agricultural crop in dry areas. However, drought is one of the most limiting environmental stress factors for crop production in the world's agricultural areas. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes before germination. The aim of this study is to determine the effect of four different priming treatments (hormo-priming (gibberellic acid, GA3), redox-priming (hydrogen peroxide, H2O2), osmo-priming (polyethylene glycol, PEG) and thermo-priming (38oC)) on total chlorophyll content (SPAD), relative water content (RWC), specific leaf area (SLA), H2O2 amounts and shoot-root lengths in a local wheat variety (cv. Ekiz). Drought stress significantly decreased seed germination, shoot-root lengths, SLA, SPAD and RWC while increasing H2O2 content. Thermo-priming treatments fully improved the negative effects of drought on chlorophyll amount and germination compared to control plants. However, shoot-root lengths improved only in half level of control plants. While drought stress decreased seed germination by 14%, hormo-priming treatment ensured germination of all seeds. On the contrary of other priming treatments, hormo-priming and osmo-priming treatments increased RWC. Consequently, thermo-priming and hormo-priming treatments found most effective than the other priming treatments in drought stress resistance for cv. Ekiz.

Project Number

Yok

References

  • Abid, M., Hakeem, A., Shao, Y., Liu, Y., Zahoor, R., Fan, Y., Suyu, J., Tian, Z., Jiang, D., Sinider, J. L., Dai, T., 2018. Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany. 145: 12-20.
  • Acar, O., Yıldız, M. T., Günay, E., Baltacıer, G., 2020. Kuraklık stresi altındaki buğdayda eksojen Glisin Betain’in fizyolojik ve biyokimyasal etkileri. Anadolu Tarım Bilimleri Dergisi. 35(3): 446-455.
  • Aghanejad, M., Mahfoozi, S., Sharghi, Y., 2015. Effects of late-season drought stress on some physiological traits, yield, and yield components of wheat genotypes. In Biological Forum. 7(1): 1426).
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Zhu, Y., 2015. Rising temperatures reduce global wheat production. Nature Climate Change. 5(2): 143-147.
  • Balkan, A., 2012. Effect of artificial drought stress on seed quality of bread wheat. Iranian Journal of Plant Physiology. 2(2): 403-412.
  • Bradford, K. J., 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort. Sci. 21(5):1105- 1112.
  • Cetinel, A. H. S., Yalcinkaya, T., Akyol, T. Y., Gokce, A., Turkan, I., 2021. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. Plant Physiology and Biochemistry. 167: 321-336.
  • Cheeseman, J. M., 2006. Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany. 57(10): 2435-2444.
  • Demirbaş, S., Balkan, A., 2018. Tuz stresi koşullarında bazı tritikale çeşitlerinin hidrojen peroksit ön uygulamasına tepkileri. Tekirdağ Ziraat Fakültesi Dergisi. 15(2): 5-13.
  • Elmas, T., Acar, O., 2021. The Effects of some seed priming treatments on germination and seedling development in wheat. International Journal of Scientific and Technological Research. 7 (5): 1.
  • Gençtan, A. B. T., 2013. Ekmeklik buğdayda (Triticum aestivum L.) osmotik stresin çimlenme ve erken fide gelişimi üzerine etkisi. Tekirdağ Ziraat Fakültesi Dergisi. 10(2): 44-52.
  • Ghobadi, M., Abnavi, M. S., Honarmand, S. J., Ghobadi, M. E., Mohammadi, G. R., 2012. Effect of hormonal priming (GA3) and osmopriming on behavior of seed germination in wheat (Triticum aestivum L.). Journal of Agricultural Science. 9(4).
  • Guo, X., Zhi, W., Feng, Y., Zhou, G., Zhu, G., 2022. Seed priming improved salt-stressed sorghum growth by enhancing antioxidative defense. Plos one. 17(2).
  • Jisha, K. C., Vijayakumari, K., Puthur, J. T., 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum. 35(5): 1381-1396.
  • Kumar, D., Yusuf, M. A., Singh, P., Sardar, M., Sarin, N. B., 2014. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol. 4(8): 1108.
  • Kumar, M., Kesawat, M. S., Ali, A., Lee, S. C., Gill, S. S., Kim, H. U., 2019. Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants. 8(12): 592.
  • Liaqat, N., Liaqat, A., Ali, M., Qayyum, Z., Amir, R., Siddique, R., Budak, H., 2020. Wheat genomics and genome editing. In Climate Change and Food Security with Emphasis on Wheat. Academic Press. 331-346.
  • Lugojan, C., Ciulca, S., 2011. Evaluation of relative water content in winter wheat. Journal of Horticulture, Forestry and Biotechnology. 15(2): 173-177.
  • Maroufi, K., Farahani, H. A., Moradi, O., 2011. Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Advances in Environmental Biology. 3659-3664.
  • Michel, B. E., Kaufmann, M. R., 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 51(5): 914-916.
  • Nawaz, J., Hussain, M., Jabbar, A., Nadeem, G. A., Sajid, M., Subtain, M. U., Shabbir, I., 2013. Seed priming a technique. International Journal of Agriculture and Crop Sciences. 6(20): 1373.
  • Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., Bukhov, N. G., 2010. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology. 57(1): 87-95.
  • Paparella S, Araujo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34: 1281–1293.
  • Peryea, F. J., Kammereck, R., 1997. Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air, and Soil Pollution. 93(1): 243-254.
  • Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., Ahmad, S., 2019. Methods of seed priming. In Priming and pretreatment of seeds and seedlings (pp. 1-10). Springer, Singapore.
  • Siddique, M. R. B., Hamid, A. I. M. S., Islam, M. S., 2000. Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica. 41: 35-39.
  • Singh, N., Mishra, A., Jha, B., 2014. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Marine biotechnology. 16(3): 321-332.
  • Smart, R., E., Bingham, G. E., 1974. Rapid estimates of relative water content. Plant Physiology. 53(2): 258-260.
  • Tezcan, A., Aslan, G. E., Kaman, H., 2019. Evaluation of drought stress on the chlorophyll content of the plants: a review of the solanaceae family. Feb-Fresenıus Environmental Bulletin. 28(6): 4636-4641.
  • Wang, X., Cai, J., Liu, F., Dai, T., Cao, W., Wollenweber, B., Jiang, D., 2014. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry.74:185-192.
  • Wilson, P. J., Thompson, K. E. N., Hodgson, J. G., 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. The New Phytologist. 143(1): 155-162.
  • Yalçın, E., 2018. Ekosistemlerde yaprağın ekolojik fonksiyonları. Black Sea Journal of Engineering and Science. 1(2): 68-82.
  • Zhang, X., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W., Jiang, D., 2016. Physiological and transcriptional analyses of induced post-anthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany. 131: 181-189.
There are 33 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Eda Günay 0000-0002-6616-6228

Müge Teker Yıldız 0000-0001-7657-9811

Okan Acar 0000-0002-9818-8827

Project Number Yok
Publication Date December 28, 2022
Published in Issue Year 2022

Cite

APA Günay, E., Teker Yıldız, M., & Acar, O. (2022). Effects of Different Priming Treatments on Germination and Seedling Growth of Wheat under Drought Stress. COMU Journal of Agriculture Faculty, 10(2), 303-311. https://doi.org/10.33202/comuagri.1149497