BibTex RIS Cite

Na+ , K + oranı Mısır (Zea mays L.) Yapraklarında Hücre Zarı H+ -ATPase Hidrolitik ve Pompalama Aktivitesini Etkiler mi?

Year 2013, Volume: 1 Issue: 1, 43 - 50, 01.06.2013

Abstract

Tuzluluk bitki büyümesi ve tarımsal verimliliği sınırlar. Tuz stresinin ilk aşamasında, bitkilerin büyümesi ağırlıklı olarak ozmotik stresten ve az da olsa Na+ iyonundan olumsuz yönde etkilenir. Çalışmamızın amacı, Na+ un plazma zarı H+-ATPaz’ının hem hidrolitik hem de pompalama aktivitesini etkileyip etkilemediğini araştırmaktır. Sodyum tuzluluğu bitki içerisinde Na+/K+ oranında değişime neden olur buda K+ un azalmasına neden olur. Yüksek sitoplazmik Na+ konsantrasyonları ve düşük K konsantrasyonlarının plazma zarı H+-ATPaz aktivitesi üzerine etkisi vardır. Azalan H+-ATPaz aktivitesi apoplast asidifikasyonunda düşüşe neden olur. Bu süreç, hücre duvarı esnekliğini sınırlar ve tuz stresi sonrası büyüme azalır. Bu nedenle, hücre uzaması için önemli olan H+-ATPaz aktivitesi, farklı Na+/K+ oranlarının etkisi altında ölçülmüştür. Plazma membranları iki fazlı sulu polimer tekniği kullanılarak iki günlük mısır sürgünlerinden izole edilmiştir. ATPaz aktivitesi serbest kalan Pi nin ölçülmesi ile tespit edilmiştir. H+-pompalama aktivitesi akridin oranın absorbansı ile belirlenmiştir. İzole edilen hücre zarlarına in vitro koşullarında Na+ ve K+ verilmiştir. Sitoplazmik 100 mM yüksek Na+ konsantrasyonu, 100 mM K+ konsantrasyonu ile karşılaştırıldığında hidrolitik H+-ATPaz etkinliği %80’e düşerken, H+-pompalama aktivitesi %30’a düşmüştür

References

  • Arif, H., Tomos, A.D., 1993. Control of wheat leaf growth under saline conditions. In: H. Lieth, A. Al Masoom, eds. Towards the Rational Use of High Salinity Tolerant Plants. Kluwer, London 45–52.
  • Baginski, E.S., Foa, P.P., Zak, B., 1967. Determination of phosphate: Study of labile organic phosphate interference. Clin. Chim. Acta 15, 155–158.
  • Boyer, J.S., 1987. Hydraulics, wall extensibility and wall proteins. Proc. of II. Annual Penn-State Symposium on Plant Physiology, American Society of Plant Physiologists, Pennsylvania State University, University Park, PA, pp. 109–12.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
  • Briskin, D.P., Hanson, J.B., 1992. How does the plasma membrane H+-ATPase pump protons. J. Exp. Bot. 43, 269- 289.
  • Cheeseman, J.M., 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87, 547–550.
  • Cramer, G.R., Bowman, D.C., 1992. Kinetics of maize leaf elongation. II. Responses of a sodium excluding cultivar and a Na-including cultivar to varying Na/Ca salinity. J. Exp. Bot. 43, 1857–1864.
  • Cosgrove, D.J., 1997. Relaxation in a high–stress environment: the molecular bases of extensible walls and cell enlargement. Plant Cell 9: 1031–1041.
  • Cramer, G.R., Krishnan, K., Abrams, S.Z., 1998. Kinetics of maize leaf elongation. IV. Effects of (+)- and (-)-abscisic acid. J. Exp. Bot. 49, 191–198.
  • Epstein, E., Norlyn, J.D., Rush, D.W., Kingsbury, R.W., 1980. Science 210, 399–404.
  • Faraday, C.D., Spanswick, R.M., 1992. Maize root plasma membranes isolated by aqueous polymer two-phase partitionating: Assessment of residual tonoplast ATPase and pyrophosphatase activities. Exp. Bot. 43, 1583– 1590.
  • Fricke, W., Peters, W.S., 2002. The biophysics of leaf growth in salt-stressed barley: a study at the cell level. Plant Physiol. 129, 374–388.
  • Fortmeier, R., Schubert, S., 1995. Salt tolerance of maize (Zea mays L.): The role of sodium exclusion. Plant Cell Environ. 18, 1041–1047.
  • Gibrat, R., Grouzis, J.P, Rigaud, J., Grignon, C., 1990. Potassium stimulation of corn root plasmalemma ATPase. II. H+-pumping in native and reconstituted vesicles with purified ATPase. Plant Physiol. 93, 1183–1189.
  • Greenway, H., Munns, R., 1980. Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31, 149–190.
  • Hatzig, S., Hanstein, S., Schubert, S., 2010. Apoplast acidification is not a necessary determinant for the resistance of maize in the first phase of salt stress. J. Plant Nutr. Soil Sci. 173, 559–562.
  • Jahn, T., Johansson, F., Lüthen, H., Volkmann, D., Larsson, C., 1996. Reinvestigation of auxin and fusicoccin stimulation of the plasma-membrane H+-ATPase activity. Planta 199: 359–365.
  • Johanson, F., Olbe, M., Sommarin, M., Larsson, C., 1995. Brij 58, a polyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 7, 165–173.
  • Kutschera, U., 1994. Transley Review No. 66. The current status of the acid-growth hypothesis. New Phytol. 126, 549–569.
  • Larsson, C., 1985. Plasma membrane. In H.F. Linskens, J.F. Jackson, eds., Modern Methods of Plant Analysis, New Series Vol 1: Cell Components. Springer-Verlag, Berlin, pp. 85–104.
  • Maas, E.V., Hoffmann, G.J., 1977. Crop salt tolerance-current assessment. J. Irrig. Drainage Divison ASCE, 103 (IR2), 115–134.
  • Maas, E.V., Hoffmann, G.J., 1983. Salt sensitivity of corn at various growth stages. California Agriculture 37, 14–15.
  • Matthuis, F.J.M., Amtmann, A, 1999. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133.
  • McQueen-Mason, S.J., Fry, S.C., Durachko, D.M., Cosgrove, D.J., 1993. The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190: 327–331.
  • Munns, R., 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 16, 15–24.
  • Neumann, P.M., 1993. Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Environ. 16, 1107–1114.
  • O'Neill, S.D., Spanswick, R.M., 1984. Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiol. 75, 586–591.
  • Peters, W.S., Luthen, H., Böttger, M., Felle, H., 1998. The temporal correlation of changes in apoplast pH and growth rate in maize coleoptile segments. Aust. J. Plant Physiol. 25, 21–25.
  • Pitann, B., Schubert, S., Mühling, K.H., 2009. Decline in leaf growth under salt stress is due to an inhibition of H+ pumping activity and increase in apoplastic pH of maize (Zea mays) leaves. J. Plant Nutr. Soil Sci. 172, 535– 543.
  • Rausch, T., Kirsch, Löw, R., Lehr, A., Viereck, R., Zhigang, R., 1996. Salt stress responses of higher plants: the role of proton pumps and Na+/K+-Antiporters. J. Plant Physiol. 148, 425–433.
  • Rayle, D.L., Cleland, RE., 1992. The acid growth theory of auxin–induced cell elongation is alive and well. Plant Physiol 99, 1271–1274.
  • Ruiz, J.R., 2001. Engineering salt tolerance in crop plants. Trends Plant Sci. 6, 451.
  • Schubert, S., 1999. Anpassung von Mais (Zea mays L.) an Bodensalinität: Strategien und Konzepte. In: Stoffumsatz im wurzelnahen Raum. Ökophysiologie des Wurzelraumes. Hrsg. W. Merbach, L. Wittenmayer und J. Augustin. B.G. Teubner Stuttgart, Leipzig S. 74–79.
  • Schubert, S., Zörb, C., Sümer, A., 2001. Salt resistance of maize: Recent developments. In: W.J. Horst et al. (Eds.), Plant Nutrition - Food Security and Sustainability of Agro-Ecosytems. Kluwer Academic Publishers, pp. 404–405.
  • Schubert, S., Neubert, A., Schierholt, A., Sümer, A., Zörb, C., 2009. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Sci. 177, 196–202.
  • Sümer, A., Zörb, C., Yan, F., Schubert, S., 2004. Evidence of Na+ toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. J. Appl. Bot. 78, 135–139.
  • Taiz, L., 1984. Plant cell expansion: Regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol. 35, 585– 657.
  • Van Volkenburgh, E., Boyer, J.S., 1985. Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol 77, 190–194.
  • Wakeel, A., Sümer, A., Hansstein, S., Yan, F., Schubert, S., 2011. In vitro of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiol. and Biochem. 49, 341–345.
  • Yan, F., Zhu, Y., Müller, C., Zörb, C., Schubert, S., 2002. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol. 129, 50–63.

Does the Ratio of Na+ and K+ Affect the Hydrolytic and Pumping Activity of the Plasma Membrane H+ -Atpase from Maize (Zea Mays L.) Shoot?

Year 2013, Volume: 1 Issue: 1, 43 - 50, 01.06.2013

Abstract

Salinity limits plant growth and impairs agricultural productivity. In the first phase of salt stress, growth of plants is impaired predominantly by osmotic stress and only slightly by Na+ effects. The aim of our work was to investigate whether Na+ affects both hydrolytic and pumping activity of the plasma membrane H+ ATPase. Sodium salinity leads to a shift of the Na+/K+ ratio resulting in a displacement of K+ in the plant. It was shown that high cytoplasmatic Na+ concentrations and low K+ concentrations have an effect on the H+ ATPase activity of the plasma membrane. Reduced H+-ATPase activities caused a reduction of the acidification of the apoplast. This process limits the cell-wall extensibility and thus reduces growth after salt stress. For this reason, H+ATPase activity, which is important for cell elongation was measured under the influence of different Na+/K+ratios. Plasma membrane was isolated from two days old maize shoots using the aqueous polymer two-phase technique. ATPase activity was determined by measuring the release of Pi. The H+-pumping activity was revealed by absorbance quenching of acridine orange. Identical plant shoot material was used for ATPase extraction and effects of Na+ and K+ were tested in vitro. High concentration of 100 mM Na+ decreased the hydrolytic H+-ATPase activity to values of 80%, in comparison to high concentration of K+ (100 mM) without Na. However, under comparable conditions the H+ pumping activity was decreased to 30%

References

  • Arif, H., Tomos, A.D., 1993. Control of wheat leaf growth under saline conditions. In: H. Lieth, A. Al Masoom, eds. Towards the Rational Use of High Salinity Tolerant Plants. Kluwer, London 45–52.
  • Baginski, E.S., Foa, P.P., Zak, B., 1967. Determination of phosphate: Study of labile organic phosphate interference. Clin. Chim. Acta 15, 155–158.
  • Boyer, J.S., 1987. Hydraulics, wall extensibility and wall proteins. Proc. of II. Annual Penn-State Symposium on Plant Physiology, American Society of Plant Physiologists, Pennsylvania State University, University Park, PA, pp. 109–12.
  • Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
  • Briskin, D.P., Hanson, J.B., 1992. How does the plasma membrane H+-ATPase pump protons. J. Exp. Bot. 43, 269- 289.
  • Cheeseman, J.M., 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87, 547–550.
  • Cramer, G.R., Bowman, D.C., 1992. Kinetics of maize leaf elongation. II. Responses of a sodium excluding cultivar and a Na-including cultivar to varying Na/Ca salinity. J. Exp. Bot. 43, 1857–1864.
  • Cosgrove, D.J., 1997. Relaxation in a high–stress environment: the molecular bases of extensible walls and cell enlargement. Plant Cell 9: 1031–1041.
  • Cramer, G.R., Krishnan, K., Abrams, S.Z., 1998. Kinetics of maize leaf elongation. IV. Effects of (+)- and (-)-abscisic acid. J. Exp. Bot. 49, 191–198.
  • Epstein, E., Norlyn, J.D., Rush, D.W., Kingsbury, R.W., 1980. Science 210, 399–404.
  • Faraday, C.D., Spanswick, R.M., 1992. Maize root plasma membranes isolated by aqueous polymer two-phase partitionating: Assessment of residual tonoplast ATPase and pyrophosphatase activities. Exp. Bot. 43, 1583– 1590.
  • Fricke, W., Peters, W.S., 2002. The biophysics of leaf growth in salt-stressed barley: a study at the cell level. Plant Physiol. 129, 374–388.
  • Fortmeier, R., Schubert, S., 1995. Salt tolerance of maize (Zea mays L.): The role of sodium exclusion. Plant Cell Environ. 18, 1041–1047.
  • Gibrat, R., Grouzis, J.P, Rigaud, J., Grignon, C., 1990. Potassium stimulation of corn root plasmalemma ATPase. II. H+-pumping in native and reconstituted vesicles with purified ATPase. Plant Physiol. 93, 1183–1189.
  • Greenway, H., Munns, R., 1980. Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31, 149–190.
  • Hatzig, S., Hanstein, S., Schubert, S., 2010. Apoplast acidification is not a necessary determinant for the resistance of maize in the first phase of salt stress. J. Plant Nutr. Soil Sci. 173, 559–562.
  • Jahn, T., Johansson, F., Lüthen, H., Volkmann, D., Larsson, C., 1996. Reinvestigation of auxin and fusicoccin stimulation of the plasma-membrane H+-ATPase activity. Planta 199: 359–365.
  • Johanson, F., Olbe, M., Sommarin, M., Larsson, C., 1995. Brij 58, a polyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 7, 165–173.
  • Kutschera, U., 1994. Transley Review No. 66. The current status of the acid-growth hypothesis. New Phytol. 126, 549–569.
  • Larsson, C., 1985. Plasma membrane. In H.F. Linskens, J.F. Jackson, eds., Modern Methods of Plant Analysis, New Series Vol 1: Cell Components. Springer-Verlag, Berlin, pp. 85–104.
  • Maas, E.V., Hoffmann, G.J., 1977. Crop salt tolerance-current assessment. J. Irrig. Drainage Divison ASCE, 103 (IR2), 115–134.
  • Maas, E.V., Hoffmann, G.J., 1983. Salt sensitivity of corn at various growth stages. California Agriculture 37, 14–15.
  • Matthuis, F.J.M., Amtmann, A, 1999. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133.
  • McQueen-Mason, S.J., Fry, S.C., Durachko, D.M., Cosgrove, D.J., 1993. The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190: 327–331.
  • Munns, R., 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 16, 15–24.
  • Neumann, P.M., 1993. Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Environ. 16, 1107–1114.
  • O'Neill, S.D., Spanswick, R.M., 1984. Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiol. 75, 586–591.
  • Peters, W.S., Luthen, H., Böttger, M., Felle, H., 1998. The temporal correlation of changes in apoplast pH and growth rate in maize coleoptile segments. Aust. J. Plant Physiol. 25, 21–25.
  • Pitann, B., Schubert, S., Mühling, K.H., 2009. Decline in leaf growth under salt stress is due to an inhibition of H+ pumping activity and increase in apoplastic pH of maize (Zea mays) leaves. J. Plant Nutr. Soil Sci. 172, 535– 543.
  • Rausch, T., Kirsch, Löw, R., Lehr, A., Viereck, R., Zhigang, R., 1996. Salt stress responses of higher plants: the role of proton pumps and Na+/K+-Antiporters. J. Plant Physiol. 148, 425–433.
  • Rayle, D.L., Cleland, RE., 1992. The acid growth theory of auxin–induced cell elongation is alive and well. Plant Physiol 99, 1271–1274.
  • Ruiz, J.R., 2001. Engineering salt tolerance in crop plants. Trends Plant Sci. 6, 451.
  • Schubert, S., 1999. Anpassung von Mais (Zea mays L.) an Bodensalinität: Strategien und Konzepte. In: Stoffumsatz im wurzelnahen Raum. Ökophysiologie des Wurzelraumes. Hrsg. W. Merbach, L. Wittenmayer und J. Augustin. B.G. Teubner Stuttgart, Leipzig S. 74–79.
  • Schubert, S., Zörb, C., Sümer, A., 2001. Salt resistance of maize: Recent developments. In: W.J. Horst et al. (Eds.), Plant Nutrition - Food Security and Sustainability of Agro-Ecosytems. Kluwer Academic Publishers, pp. 404–405.
  • Schubert, S., Neubert, A., Schierholt, A., Sümer, A., Zörb, C., 2009. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Sci. 177, 196–202.
  • Sümer, A., Zörb, C., Yan, F., Schubert, S., 2004. Evidence of Na+ toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. J. Appl. Bot. 78, 135–139.
  • Taiz, L., 1984. Plant cell expansion: Regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol. 35, 585– 657.
  • Van Volkenburgh, E., Boyer, J.S., 1985. Inhibitory effects of water deficit on maize leaf elongation. Plant Physiol 77, 190–194.
  • Wakeel, A., Sümer, A., Hansstein, S., Yan, F., Schubert, S., 2011. In vitro of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiol. and Biochem. 49, 341–345.
  • Yan, F., Zhu, Y., Müller, C., Zörb, C., Schubert, S., 2002. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol. 129, 50–63.
There are 40 citations in total.

Details

Other ID JA39SY62MV
Journal Section Articles
Authors

Ali Sümer This is me

Christian Zörb This is me

Feng Yan This is me

Sven Schubert This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Sümer, A., Zörb, C., Yan, F., Schubert, S. (2013). Does the Ratio of Na+ and K+ Affect the Hydrolytic and Pumping Activity of the Plasma Membrane H+ -Atpase from Maize (Zea Mays L.) Shoot?. COMU Journal of Agriculture Faculty, 1(1), 43-50.