Research Article
BibTex RIS Cite

Spatial and Temporal Changes of Soil Nitrogen Contents and Determination of Nitrogen Resources by Natural Isotope Technique in Agricultural Lands

Year 2022, Volume: 10 Issue: 2, 346 - 358, 28.12.2022
https://doi.org/10.33202/comuagri.1187983

Abstract

In this study, soil samples were taken at three different periods at 51 points in Çanakkale-Kumkale Plain (Troy). Soil total nitrogen (N), nitrate and ammonium contents were conducted to determine the spatial and temporal distribution of soil nitrogen. Additionally, possible sources of soil nitrogen were evaluated using δ15N isotope tools. According to δ15N results, the main source of soil nitrogen was inorganic nitrogen fertilizers in cotton, wheat, and tomato-grown soils in April. In December, most of the soil δ15N was of both organic and mineral origin. The value of soil δ15N values increased in July because of enhanced organic matter mineralization in the area. The δ15N values of the great majority of soils were between 5‰ and 10 ‰ which indicates that N was derived from organic materials. The reason for the low δ15N values in April was due to the use of excess mineral fertilizers for cotton, maize, tomato, pepper, sunflower, and wheat crops.

Supporting Institution

TUBITAK

Project Number

102Y031

Thanks

This study was supported by the Scientific and Technical Research Council of Turkey (TUBITAK 102Y031).

References

  • Abbasi, M. K., Tahir, M. M., Sabir, N., and Khurshid, M. (2015). Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth, 6(1), 197.
  • Alvarenga, P., Farto, M., Mourinha, C., and Palma, P. (2016). Beneficial use of dewatered and composted sewage sludge as soil amendments: behavior of metals in soils and their uptake by plants. Waste and Biomass Valorization, 7(5), 1189-1201.
  • Anonymous, 2018. TAGEM, Fertilizer Industry Policy Document, 2018-2022.
  • Bol, R., Eriksen, J., Smith, P., Garnett, M. H., Coleman, K., and Christensen, B. T. (2005). The natural abundance of 13C, 15N, 34S and 14C in archived (1923–2000) plant and soil samples from the Askov long‐term experiments on animal manure and mineral fertilizer. Rapid Communications in mass spectrometry, 19(22), 3216-3226.
  • Brady, N.C., 1996. The Nature and Properties of Soils (Tenth Edition). Macmillan Press, Tenth Edition HB, ISBN 0023133619.
  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. (2015). The interdisciplinary nature of Soil. Soil, 1(1), 117.
  • Chapman, H.D. (1965). Cation Exchange Capacity: Methods of Soil Analysis. American Society of Agronomy, Madison pp. 891–901 Clark, I. and P. Fritz. 1997. Environmental Isotopes in Hydrogeology, Lewis Publishers, Boca Raton, FL.
  • Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H., and Zhu, Y. G. (2013). Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proceedings of the National Academy of Sciences,110(6), 2052-2057.
  • Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis. In: KLUTE, A., ed. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2.ed. Madison, American Society of Agronomy, Soil Science Society of America,. p.383- 411.
  • Güzel, N., (1982). Toprak Verimliliği ve Gübreler. (Edi. By Samuel L. Tisdale and Werner L. Nelson) Çeviri. Ç.Ü. Ziraat Fakültesi Yayınları No:168, Ders Kitabı No:13. Adana (in Turkish).
  • Högberg, P., (1997). 15N natural abundance in soil–plant systems, New P. Phytol. 137, pp. 179–203.
  • Hyodo, M., Li, Y., Yoneda, J., Nakata, Y., Yoshimoto, N., Nishimura, A., and Song, Y. (2013). Mechanical behavior of gas‐saturated methane hydrate‐bearing sediments. Journal of Geophysical Research: Solid Earth, 118(10), 5185-5194.
  • Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral associated organic matter. Soil Biol. Biochem. 28: 665–676.
  • Kirsten, W.J., 1983. Organic elemental analysis. Academic Press, New York, NY.
  • Mordor Intelligence. Ammonia Market - Growth, Trends, COVID-19 Impact, and Forecasts (2021 2026); https://www.mordorintelligence.com/industry-reports/ammonia-market.Google Scholar
  • Nelson, R.E. 1982. Carbonate and gypsum. In: Page, A. L., et al (eds) Methods of Soil Analysis, Part 2: Chemical and microbiological properties, 2nd ed. ASA, SSSA, Madison, WI, pp. 181–197.
  • Ozcan H. and Kavdır, Y.( 2005). GIS monitoring and evaluation of nitrogen pollution in the waters of Troy, Turkey. Fresenius Environmental Bulletin, 14(1), 28-35.
  • Robinson, D., (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16(3), 153-162.
  • Shearer, G., and Kohl, D.H., (1989). Estimates of N2 fixation in ecosystems: the need for and basis of the 15N natural abundance method. In: P.W. Rundel, J.R. Ehleringer and K.A. Nagy, Editors, Stable Isotopes in Ecological Research, Springer-Verlag, New York, pp. 342–374.
  • Six, J., Elliott, E.T., Paustian, K., and Doran, J.W., (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62: 1367–1377.
  • Soil Survey Staff, 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Version 3.0, National Soil Survey Center, Lincoln, NE
  • Soil Survey Staff, (1999). Keys to Soil Taxonomy. Soil Survey Staff, U.S. Department of Agriculture, Soil Conservation Service. ISBN: 0936015829. Pocahontas Press, Incorporated. 600p.
  • SPSS, (1988): SPSS/PC+V.9.0. Base Manuel for the IBM PC/XT/AT and PS/2, Marija and Moruis. SPSS Inc.
  • Unlu, K., Özenirler, G., and Yurteri, C., (1999). Nitrogen Fertilizer Leaching from Cropped and Irrigated Sandy Soil in Central Turkey. European Journal of Soil Science, December:609-620.
  • Van Kessel, C., Farrell, R.E., Roskoski, J.P., and Keane, K.M., (1994). Recycling of the naturally occurring 15N in an established stand of Leucaena leucocephala, Soil Biol. Biochem. 26: 757–762.
  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., and Nasrulhaq Boyce, A., (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules, 21(5), 573.
  • Vitousek, P. M., (2004). Nutrient cycling and limitation: Hawai'i as a model system. Princeton University Press.
  • WRB, (2006). World Reference Base for Soil Resources. World Soil Resources Reports No. 103. (FAO: Rome).
  • Yoneyama, T., Muraoka, T., Boonkerd, N., Wadisirisuk, P., Siripin, S., and Kouno, K., (1990). Natural 15N abundance in shrub and tree legumes, Casuarina, and non-fixing plants in Thailand. Plant Soil. 128, 287–294.

Tarım Arazilerinde Toprak Azot İçeriklerinin Mekansal ve Zamansal Değişimleri ve Azot Kaynaklarının Doğal İzotop Tekniği ile Belirlenmesi

Year 2022, Volume: 10 Issue: 2, 346 - 358, 28.12.2022
https://doi.org/10.33202/comuagri.1187983

Abstract

Bu çalışmada Çanakkale-Kumkale Ovası'nda (Truva) 51 farklı noktadan, üç farklı dönemde toprak örnekleri alınmıştır. Toprakta bulunan azotun, mekansal ve zamansal dağılımını belirlemek için topraklarda toplam azot (N), nitrat-N ve amonyum-N içerikleri belirlenmiştir. Ayrıca topraktaki azotun kaynaklarını belirleyebilmek için, toprakların doğal δ15N izotop değerleri belirlenmiştir. δ15N sonuçlarına göre Nisan ayında pamuk, buğday ve domates yetiştirilen topraklarda toprak azotunun ana kaynağı inorganik azotlu gübreler olmuştur. Aralık ayında ise çoğu toprakta azotun kaynağı organik ve mineral kökenlidir. Artan organik madde mineralizasyonu nedeniyle, örnekleme alanlarındaki toprak δ15N değerleri Temmuz ayında artış göstermiştir. Toprakların büyük çoğunluğunun δ15N değerleri 5‰ ile 10‰ arasında olup, bu da topraktaki N'nin organik orijinli olduğunu göstermektedir. Nisan ayında δ15N değerlerinin düşük olmasının nedeni, pamuk, mısır, domates, biber, ayçiçeği ve buğday bitkileri için fazla mineral gübre kullanılmasıdır.

Project Number

102Y031

References

  • Abbasi, M. K., Tahir, M. M., Sabir, N., and Khurshid, M. (2015). Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth, 6(1), 197.
  • Alvarenga, P., Farto, M., Mourinha, C., and Palma, P. (2016). Beneficial use of dewatered and composted sewage sludge as soil amendments: behavior of metals in soils and their uptake by plants. Waste and Biomass Valorization, 7(5), 1189-1201.
  • Anonymous, 2018. TAGEM, Fertilizer Industry Policy Document, 2018-2022.
  • Bol, R., Eriksen, J., Smith, P., Garnett, M. H., Coleman, K., and Christensen, B. T. (2005). The natural abundance of 13C, 15N, 34S and 14C in archived (1923–2000) plant and soil samples from the Askov long‐term experiments on animal manure and mineral fertilizer. Rapid Communications in mass spectrometry, 19(22), 3216-3226.
  • Brady, N.C., 1996. The Nature and Properties of Soils (Tenth Edition). Macmillan Press, Tenth Edition HB, ISBN 0023133619.
  • Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., and Van Oost, K. (2015). The interdisciplinary nature of Soil. Soil, 1(1), 117.
  • Chapman, H.D. (1965). Cation Exchange Capacity: Methods of Soil Analysis. American Society of Agronomy, Madison pp. 891–901 Clark, I. and P. Fritz. 1997. Environmental Isotopes in Hydrogeology, Lewis Publishers, Boca Raton, FL.
  • Cui, S., Shi, Y., Groffman, P. M., Schlesinger, W. H., and Zhu, Y. G. (2013). Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proceedings of the National Academy of Sciences,110(6), 2052-2057.
  • Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis. In: KLUTE, A., ed. Methods of soil analysis. Part 1. Physical and mineralogical methods. 2.ed. Madison, American Society of Agronomy, Soil Science Society of America,. p.383- 411.
  • Güzel, N., (1982). Toprak Verimliliği ve Gübreler. (Edi. By Samuel L. Tisdale and Werner L. Nelson) Çeviri. Ç.Ü. Ziraat Fakültesi Yayınları No:168, Ders Kitabı No:13. Adana (in Turkish).
  • Högberg, P., (1997). 15N natural abundance in soil–plant systems, New P. Phytol. 137, pp. 179–203.
  • Hyodo, M., Li, Y., Yoneda, J., Nakata, Y., Yoshimoto, N., Nishimura, A., and Song, Y. (2013). Mechanical behavior of gas‐saturated methane hydrate‐bearing sediments. Journal of Geophysical Research: Solid Earth, 118(10), 5185-5194.
  • Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral associated organic matter. Soil Biol. Biochem. 28: 665–676.
  • Kirsten, W.J., 1983. Organic elemental analysis. Academic Press, New York, NY.
  • Mordor Intelligence. Ammonia Market - Growth, Trends, COVID-19 Impact, and Forecasts (2021 2026); https://www.mordorintelligence.com/industry-reports/ammonia-market.Google Scholar
  • Nelson, R.E. 1982. Carbonate and gypsum. In: Page, A. L., et al (eds) Methods of Soil Analysis, Part 2: Chemical and microbiological properties, 2nd ed. ASA, SSSA, Madison, WI, pp. 181–197.
  • Ozcan H. and Kavdır, Y.( 2005). GIS monitoring and evaluation of nitrogen pollution in the waters of Troy, Turkey. Fresenius Environmental Bulletin, 14(1), 28-35.
  • Robinson, D., (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16(3), 153-162.
  • Shearer, G., and Kohl, D.H., (1989). Estimates of N2 fixation in ecosystems: the need for and basis of the 15N natural abundance method. In: P.W. Rundel, J.R. Ehleringer and K.A. Nagy, Editors, Stable Isotopes in Ecological Research, Springer-Verlag, New York, pp. 342–374.
  • Six, J., Elliott, E.T., Paustian, K., and Doran, J.W., (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62: 1367–1377.
  • Soil Survey Staff, 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Version 3.0, National Soil Survey Center, Lincoln, NE
  • Soil Survey Staff, (1999). Keys to Soil Taxonomy. Soil Survey Staff, U.S. Department of Agriculture, Soil Conservation Service. ISBN: 0936015829. Pocahontas Press, Incorporated. 600p.
  • SPSS, (1988): SPSS/PC+V.9.0. Base Manuel for the IBM PC/XT/AT and PS/2, Marija and Moruis. SPSS Inc.
  • Unlu, K., Özenirler, G., and Yurteri, C., (1999). Nitrogen Fertilizer Leaching from Cropped and Irrigated Sandy Soil in Central Turkey. European Journal of Soil Science, December:609-620.
  • Van Kessel, C., Farrell, R.E., Roskoski, J.P., and Keane, K.M., (1994). Recycling of the naturally occurring 15N in an established stand of Leucaena leucocephala, Soil Biol. Biochem. 26: 757–762.
  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., and Nasrulhaq Boyce, A., (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules, 21(5), 573.
  • Vitousek, P. M., (2004). Nutrient cycling and limitation: Hawai'i as a model system. Princeton University Press.
  • WRB, (2006). World Reference Base for Soil Resources. World Soil Resources Reports No. 103. (FAO: Rome).
  • Yoneyama, T., Muraoka, T., Boonkerd, N., Wadisirisuk, P., Siripin, S., and Kouno, K., (1990). Natural 15N abundance in shrub and tree legumes, Casuarina, and non-fixing plants in Thailand. Plant Soil. 128, 287–294.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Yasemin Kavdır 0000-0002-2527-7685

Orhan Yüksel 0000-0003-0679-8722

Ali Sungur 0000-0002-2943-9207

Hasan Özcan 0000-0002-3476-1241

Project Number 102Y031
Publication Date December 28, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Kavdır, Y., Yüksel, O., Sungur, A., Özcan, H. (2022). Tarım Arazilerinde Toprak Azot İçeriklerinin Mekansal ve Zamansal Değişimleri ve Azot Kaynaklarının Doğal İzotop Tekniği ile Belirlenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 10(2), 346-358. https://doi.org/10.33202/comuagri.1187983