Research Article
BibTex RIS Cite

Identification and Expression Profiling of LEA Gene Family in Olive (Olea europaea L.)

Year 2024, Volume: 12 Issue: 2, 294 - 305, 27.12.2024
https://doi.org/10.33202/comuagri.1554675

Abstract

The olive tree (Olea europaea L.) is a vital crop in Mediterranean agriculture, frequently exposed to harsh drought conditions. Among the molecular mechanisms that confer drought tolerance, Late Embryogenesis Abundant (LEA) proteins play a central role. These hydrophilic proteins function in cellular protection during water deficit, preventing protein denaturation, stabilizing membranes, and scavenging reactive oxygen species. In this study, we performed a comprehensive phylogenetic and gene expression analysis of LEA proteins in olive. We identified LEA genes expressed across different tissues and conducted a differential expression analysis to assess their response to drought stress. A phylogenetic tree was constructed to classify LEA family members, and expression data was mapped onto the tree to link evolutionary conservation with functional responses. LEA proteins were classified into distinct subgroups (LEA_1-5, Dehydrin, SMP) to highlight their functional diversity. Additionally, a tissue-specific expression heatmap was generated to illustrate the spatial dynamics of LEA gene activity. Our results provide valuable insights into the molecular mechanisms of drought tolerance in olive and offer potential targets for genetic improvement to enhance resilience in olive cultivation.

References

  • Altunoğlu, Y. Ç., Baloğlu, M. C., Baloglu, P., Yer, E. N., Kara, S., 2017. Genome-wide identification and comparative expression analysis of lea genes in watermelon and melon genomes. Physiology and Molecular Biology of Plants. 23(1): 5-21.
  • Aziz, M. A., Sabeem, M., Kutty, M. S., Brini, F., Masmoudi, K., 2021. Plant group ii lea proteins: intrinsically disordered structure for multiple functions in response to environmental stresses. Biomolecules. 11(11): 1662.
  • Battaglia, M., Covarrubias, A. A., 2013. Late embryogenesis abundant (lea) proteins in legumes. Frontiers in Plant Science. 4: Article 190.
  • Ben Abdallah, M., Trupiano, D., Polzella, A., De Zio, E., Sassi, M., Scaloni, A., Zarrouk, M., Ben Youssef, N., Stefania Scippa, G., 2018. Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology. 220: 83–95.
  • Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M., Masmoudi, K., 2007. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports. 26(11): 2017–2026.
  • Gholami, R., Fahadi Hoveizeh, N., Zahedi, S. M., Gholami, H., Carillo, P., 2022. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC Plant Biology. 22(1): 477.
  • Hand, S. C., Menze, M. A., Toner, M., Boswell, L., Moore, D., 2011. LEA proteins during water stress: not just for plants anymore. Annual Review of Physiology. 73(1): 115–134.
  • Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., Masmoudi, K., 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior. 6(10): 1503–1509.
  • Huang, R., Xiao, D., Wang, X., Zhan, J., Wang, A., He, L., 2022. Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology. 22(1): 155.
  • Hundertmark, M., Hincha, D. K., 2008. LEA (Late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9(1): 118.
  • Jia, C., Guo, B., Wang, B., Li, X., Yang, T., Li, N., Wang, J., Yu, Q., 2022. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC Plant Biology. 22(1): 596.
  • Jia, J. S., Ge, N., Wang, Q. Y., Zhao, L. T., Chen, C., Chen, J. W., 2023. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics. 24(1): 126.
  • Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A., 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647-1649. 10.1093/bioinformatics/bts199. Epub 2012 Apr 27. PMID: 22543367; PMCID: PMC3371832.
  • Li, Z., Chi, H., Liu, C., Zhang, T., Han, L., Li, L., Pei, X., Long, Y., 2021. Genome-wide identification and functional characterization of LEA genes during seed development process in linseed flax (Linum usitatissimum L.). BMC Plant Biology. 21(1): 193.
  • Lin, Y., She, M., Zhao, M., Yu, H., Xiao, W., Zhang, Y., Li, M., 2024. Genome-wide analysis and functional validation reveal the role of late embryogenesis abundant genes in strawberry (Fragaria × ananassa) fruit ripening. BMC Genomics. 25(1): 228.
  • Ma, J., Zuo, D., Ye, H., Yan, Y., Li, M., Zhao, P., 2023. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (lea) gene family in Juglans regia and its wild relatives J. mandshurica. BMC Plant Biology. 23(1).
  • Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A. R. N., Lopez, R., Butcher, S., 2024. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Research. 52(W1): W521–525.
  • Magwanga, R. O., Lu, P., Kirungu, J. N., Lu, H., Wang, X., Cai, X., Zhou, Z., 2018. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics. 19(1): 6.
  • Ødum, M. T., Teufel, F., Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Winther, O., Nielsen, H., 2024. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Research. 52(W1): W215–220.
  • Peng, Y., Reyes, J. L., Wei, H., Yang, Y., Karlson, D., Covarrubias, A. A., Krebs, S. L., Fessehaie, A., Arora, R., 2008. RcDhn5, a cold acclimation‐responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5‐overexpressing Arabidopsis plants. Physiologia Plantarum. 134(4): 583–597.
  • Ramírez-Tejero JA., Jiménez-Ruiz J., Leyva-Pérez MO, Barroso JB., Luque F., 2020. Gene Expression Pattern in Olive Tree Organs (Olea europaea L.). Genes (Basel). 12;11(5):544. 10.3390/genes11050544. PMID: 32408612; PMCID: PMC7291012.
  • Rico, E. I., Martos De La Fuente, G. C., Ortega Morillas, A., Fernández Ocaña, A. M., 2023. Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean Basin. Photosynthesis Research.
  • RoyChoudhury, A., Roy, C., Sengupta, D. N., 2007. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Reports. 26(10): 1839–1859.
  • Sun, Z., Li, S., Chen, W., Zhang, J., Zhang, L., Sun, W., Wang, Z., 2021. Plant dehydrins: expression, regulatory networks, and protective roles in plants challenged by abiotic stress. International Journal of Molecular Sciences. 22(23): 12619.
  • Tsamir-Rimon, M., Ben-Dor, S., Feldmesser, E., Oppenhimer-Shaanan, Y., David-Schwartz, R., Samach, A., Klein, T., 2021. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 229(3):1398-1414. doi: 10.1111/nph.16907. Epub 2020 Oct 1. PMID: 32880972.
  • Unver, T., Wu, Z., Sterck, L., Turktas, M., Lohaus, R., Li, Z., Yang, M., et al., 2017. Genome of wild olive and the evolution of oil biosynthesis. Proceedings of the National Academy of Sciences. 114(44).
  • Wang, W., Liu, Y., Kang, Y., Liu, W., Li, S., Wang, Z., Xia, X., et al., 2024. Genome-wide characterization of LEA gene family reveals a positive role of BnaA.LEA6.a in freezing tolerance in rapeseed (Brassica napus L.). BMC Plant Biology. 24(1): 433. Yu, L., Xiong, Z., Zheng, J., Xu, D., Zhu, Z. W., Xiang, J., … Li, M., 2016. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (lea) gene family formation pattern in Brassica napus. Scientific Reports. 6(1).
  • Zhang, Y., Fan, N., Wen, W., Liu, S., Mo, X., An, Y., Zhou, P., 2022. Genome-wide identification and analysis of LEA_2 gene family in alfalfa (Medicago sativa L.) under aluminum stress. Frontiers in Plant Science. 13: 976160.

Zeytinde (Olea europaea L.) LEA Gen Ailesinin Tanımlanması ve Gen Anlatım Düzeylerinin İncelenmesi

Year 2024, Volume: 12 Issue: 2, 294 - 305, 27.12.2024
https://doi.org/10.33202/comuagri.1554675

Abstract

Zeytin ağacı (Olea europaea L.), Akdeniz tarımında hayati öneme sahip bir bitki olup sık sık kuraklık gibi zorlayıcı koşullara maruz kalmaktadır. Kuraklık toleransını sağlayan moleküler mekanizmalar arasında, Late Embryogenesis Abundant (LEA) proteinleri merkezi bir rol oynamaktadır. Bu hidrofobik proteinler, su kaybı sırasında hücresel koruma sağlamakta, proteinlerin bozulmasını engellemekte, zarları stabilize etmekte ve reaktif oksijen türlerini yok etmektedir. Bu çalışmada, zeytinde LEA proteinlerinin kapsamlı bir filogenetik ve gen anlatımı analizini gerçekleştirdik. Farklı dokularda ifade edilen LEA genlerini tanımladık ve bu genlerin kuraklık stresine karşı verdikleri yanıtları değerlendirmek için diferansiyel gen anlatımı analizi yaptık. LEA aile üyelerini sınıflandırmak için bir filogenetik ağaç oluşturuldu ve evrimsel koruma ile fonksiyonel yanıtları ilişkilendirmek amacıyla anlatım verileri bu ağaca entegre edildi. LEA proteinleri, işlevsel çeşitliliklerini vurgulamak için farklı alt gruplara (LEA_1-5, Dehidrin, SMP) ayrıldı. Ayrıca, dokulara özgü gen anlatımını göstermek için bir ısı haritası oluşturuldu. Sonuçlarımız, zeytinde kuraklık toleransına ilişkin moleküler mekanizmalara değerli bilgiler sağlamakta ve zeytin yetiştiriciliğinde dayanıklılığı artırmaya yönelik genetik iyileştirme için potansiyel hedefler sunmaktadır.

References

  • Altunoğlu, Y. Ç., Baloğlu, M. C., Baloglu, P., Yer, E. N., Kara, S., 2017. Genome-wide identification and comparative expression analysis of lea genes in watermelon and melon genomes. Physiology and Molecular Biology of Plants. 23(1): 5-21.
  • Aziz, M. A., Sabeem, M., Kutty, M. S., Brini, F., Masmoudi, K., 2021. Plant group ii lea proteins: intrinsically disordered structure for multiple functions in response to environmental stresses. Biomolecules. 11(11): 1662.
  • Battaglia, M., Covarrubias, A. A., 2013. Late embryogenesis abundant (lea) proteins in legumes. Frontiers in Plant Science. 4: Article 190.
  • Ben Abdallah, M., Trupiano, D., Polzella, A., De Zio, E., Sassi, M., Scaloni, A., Zarrouk, M., Ben Youssef, N., Stefania Scippa, G., 2018. Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology. 220: 83–95.
  • Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M., Masmoudi, K., 2007. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports. 26(11): 2017–2026.
  • Gholami, R., Fahadi Hoveizeh, N., Zahedi, S. M., Gholami, H., Carillo, P., 2022. Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC Plant Biology. 22(1): 477.
  • Hand, S. C., Menze, M. A., Toner, M., Boswell, L., Moore, D., 2011. LEA proteins during water stress: not just for plants anymore. Annual Review of Physiology. 73(1): 115–134.
  • Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., Masmoudi, K., 2011. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior. 6(10): 1503–1509.
  • Huang, R., Xiao, D., Wang, X., Zhan, J., Wang, A., He, L., 2022. Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology. 22(1): 155.
  • Hundertmark, M., Hincha, D. K., 2008. LEA (Late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9(1): 118.
  • Jia, C., Guo, B., Wang, B., Li, X., Yang, T., Li, N., Wang, J., Yu, Q., 2022. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC Plant Biology. 22(1): 596.
  • Jia, J. S., Ge, N., Wang, Q. Y., Zhao, L. T., Chen, C., Chen, J. W., 2023. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics. 24(1): 126.
  • Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A., 2012, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647-1649. 10.1093/bioinformatics/bts199. Epub 2012 Apr 27. PMID: 22543367; PMCID: PMC3371832.
  • Li, Z., Chi, H., Liu, C., Zhang, T., Han, L., Li, L., Pei, X., Long, Y., 2021. Genome-wide identification and functional characterization of LEA genes during seed development process in linseed flax (Linum usitatissimum L.). BMC Plant Biology. 21(1): 193.
  • Lin, Y., She, M., Zhao, M., Yu, H., Xiao, W., Zhang, Y., Li, M., 2024. Genome-wide analysis and functional validation reveal the role of late embryogenesis abundant genes in strawberry (Fragaria × ananassa) fruit ripening. BMC Genomics. 25(1): 228.
  • Ma, J., Zuo, D., Ye, H., Yan, Y., Li, M., Zhao, P., 2023. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (lea) gene family in Juglans regia and its wild relatives J. mandshurica. BMC Plant Biology. 23(1).
  • Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A. R. N., Lopez, R., Butcher, S., 2024. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Research. 52(W1): W521–525.
  • Magwanga, R. O., Lu, P., Kirungu, J. N., Lu, H., Wang, X., Cai, X., Zhou, Z., 2018. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genetics. 19(1): 6.
  • Ødum, M. T., Teufel, F., Thumuluri, V., Almagro Armenteros, J. J., Johansen, A. R., Winther, O., Nielsen, H., 2024. DeepLoc 2.1: multi-label membrane protein type prediction using protein language models. Nucleic Acids Research. 52(W1): W215–220.
  • Peng, Y., Reyes, J. L., Wei, H., Yang, Y., Karlson, D., Covarrubias, A. A., Krebs, S. L., Fessehaie, A., Arora, R., 2008. RcDhn5, a cold acclimation‐responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5‐overexpressing Arabidopsis plants. Physiologia Plantarum. 134(4): 583–597.
  • Ramírez-Tejero JA., Jiménez-Ruiz J., Leyva-Pérez MO, Barroso JB., Luque F., 2020. Gene Expression Pattern in Olive Tree Organs (Olea europaea L.). Genes (Basel). 12;11(5):544. 10.3390/genes11050544. PMID: 32408612; PMCID: PMC7291012.
  • Rico, E. I., Martos De La Fuente, G. C., Ortega Morillas, A., Fernández Ocaña, A. M., 2023. Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean Basin. Photosynthesis Research.
  • RoyChoudhury, A., Roy, C., Sengupta, D. N., 2007. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Reports. 26(10): 1839–1859.
  • Sun, Z., Li, S., Chen, W., Zhang, J., Zhang, L., Sun, W., Wang, Z., 2021. Plant dehydrins: expression, regulatory networks, and protective roles in plants challenged by abiotic stress. International Journal of Molecular Sciences. 22(23): 12619.
  • Tsamir-Rimon, M., Ben-Dor, S., Feldmesser, E., Oppenhimer-Shaanan, Y., David-Schwartz, R., Samach, A., Klein, T., 2021. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 229(3):1398-1414. doi: 10.1111/nph.16907. Epub 2020 Oct 1. PMID: 32880972.
  • Unver, T., Wu, Z., Sterck, L., Turktas, M., Lohaus, R., Li, Z., Yang, M., et al., 2017. Genome of wild olive and the evolution of oil biosynthesis. Proceedings of the National Academy of Sciences. 114(44).
  • Wang, W., Liu, Y., Kang, Y., Liu, W., Li, S., Wang, Z., Xia, X., et al., 2024. Genome-wide characterization of LEA gene family reveals a positive role of BnaA.LEA6.a in freezing tolerance in rapeseed (Brassica napus L.). BMC Plant Biology. 24(1): 433. Yu, L., Xiong, Z., Zheng, J., Xu, D., Zhu, Z. W., Xiang, J., … Li, M., 2016. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (lea) gene family formation pattern in Brassica napus. Scientific Reports. 6(1).
  • Zhang, Y., Fan, N., Wen, W., Liu, S., Mo, X., An, Y., Zhou, P., 2022. Genome-wide identification and analysis of LEA_2 gene family in alfalfa (Medicago sativa L.) under aluminum stress. Frontiers in Plant Science. 13: 976160.
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology, Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Fatih Sezer 0000-0002-9436-0191

Publication Date December 27, 2024
Submission Date September 23, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Sezer, F. (2024). Identification and Expression Profiling of LEA Gene Family in Olive (Olea europaea L.). COMU Journal of Agriculture Faculty, 12(2), 294-305. https://doi.org/10.33202/comuagri.1554675