Review
BibTex RIS Cite

İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri

Year 2018, Volume: 4 Issue: 2, 149 - 185, 17.12.2018
https://doi.org/10.28979/comufbed.440738

Abstract

Bu çalışmada, iyotça zengin yüzey ve yeraltı sularının
oluşum mekanizmaları ve iyotça zengin sular ile petrol sistemleri arasındaki
ilişki incelenmiştir. Bu amaçla, iyotça zengin yüzey ve yeraltı sularına ait
yayınlanmış hidrojeokimyasal verileri bulunan Batı Hazar (Azerbaycan), Doğu
Hazar (Türkmenistan), Sacramento (ABD), Po (İtalya) ve Joban - Hamadori
(Japonya) petrollü havzaları seçilmiştir.
Petrol ve doğalgaz yatakları içeren bu havzaların
yüzey ve yeraltı sularındaki iyot zenginleşmesinin sebebi, derinlerdeki petrol
ve doğalgaz yataklarından
tektonik, volkanik ve diğer jeolojik olaylar etkisi
ile y
üzeye ve yüzeye yakın bölümlere göç eden iyotça zengin
rezervuar suları ve hidrokarbonlardır. İncelenen
petrollü havzalardaki soğuk ve sıcak yüzey ve yeraltı sularındaki
iyot, petrol ve doğalgaz sahası sularındaki iyot ile aynı kökenlidir ve organik
maddece zengin kayaçlardan türemiştir.
Dolayısıyla,
incelenen petrollü havzaların
jeolojik ve hidrojeokimyasal verileri, iyotça
zengin yüzey ve yeraltı suları (bu sular, aynı zamanda petrol
hidrokarbonlarınca da zengindir) ile petrol sistemleri arasındaki yakın
ilişkiyi kanıtlamaktadır.
Bu yakın ilişki, soğuk ve
sıcak yüzey ve yeraltı sularında yapılacak iyot analizleri ile petrol ve
doğalgaz potansiyeli bilinmeyen bir havzanın potansiyelinin değerlendirilebileceğini
göstermektedir.
Bu
ilişki, gelecek arama hedeflerinin belirlenmesi açısından da önemlidir.

References

  • Allexan S., Fausnaugh J., Goudge C., Tedesco S., 1986. The Use of Iodine in Geochemical Exploration for Hydrocarbons. Assoc. of Petroleum Geochemical Explorationist, II, 1, 12/86: 71-93
  • Birkle P., 2005. Compositional Link Between Thermal Fluids in Mexican Deep Reservoirs. Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005
  • Bohlke J.K., Irwin J.J., 1992. Laser Microprobe Analyses of Cl, Br, I and K in Fluid Inclusions: Implications for Sources of Salinity in Some Ancient Hydrothermal Fluids. Geochim. Cosmochim. Acta, 56: 201-225
  • Bojarski L., 1970. Die Anwendung der Hydrochemischen Klassifikation bei Sucharbeiten auf Erdol. 2. Angew. Geol., 16:123-125 (in Collins, A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science, 1, Elsevier Scientific Publishing Company, Amsterdam, 496 p.)
  • Boschetti T., Toscani L., Shouakar-Stash O., Iacumin P., Venturelli G., Mucchino C., Frape S.K., 2011. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquatic Geochemistry, 17: 71-108
  • Campos J.C., Borges R.M.H., Filho A.M.O., Nobrega R., Sant’Anna Jr. G.L., 2002. Oilfield Wastewater Treatment by Combined Microfiltration and Biological Processes. Water Research, 36, 95-104
  • Chen J., Liu D., Peng P., Ning C., Xiaolin H., Baoshou Z., 2016. Iodine-129 Chronological Study of Brines from an Ordovician Paleokarst Reservoir in the Lunnan Oilfield, Tarim Basin. Applied Geochemistry, 65: 14-21
  • Collins A.G., 1969. Chemistry of Some Anadarko Basin Brines Containing High Concentration of Iodine. Chemical Geology, 4: 169-187
  • Collins A.G., Egleeson G.C., 1967. Iodine Abundance in Oilfield Brines in Oklahoma. Science, 156: 934-935
  • Collins A.G., Bennett J.H., Manuel O.H., 1971. Iodine and Algae in Sedimentary Rocks Associated with Iodine Rich Brines. Geol. Soc. Am. Bull., 82: 2607-2610
  • Collins A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science-1, Elsevier, 496 p.
  • Cosgrove M.E., 1970. Iodine in Bituminous Kimmeridge Shale of the Dorset Coast in England. Geochim. Cosmochim. Acta: 34, 830-836
  • Coustau H., 1977. Formation Waters and Hydrodynamics. Journal of Geochemical Exploration, 7: 213-241
  • Çelik M., Sarı A., 2002. Geochemistry of Formation Waters from Upper Cretaceous Calcareous Rocks of Southeast Turkey. Journal Geological Society of India. 59: 419-430
  • Dean G.A., 1963. The Iodine Content of Some New Zealand Drinking Waters with A Note on the Contribution from Sea Spray to the Iodine in Rain. New Zealand J. Science, 6: 208-214
  • Djunin V.I. and Korzun A.V., 2010. Hydrogeodynamics of Oil and Gas Basins. Springer Science+Business Media B.V., DOI 10.1007/978-90-481-2847-1, 395 p.
  • Edmunds W.M., 1973. Trace Element Variations Across an Oxidation-Reduction Barrier in A Limestone Aquifer. Proceedings of Symposium on Hydrogeochemistrv and Biogeochemistrv, Tokyo, 7-9 September 1970, 500-526
  • Elderfield H., Truesdale V.W., 1980. On the Biophilic Nature of Iodine in Sea Water. Earth Planet. Sci. Lett. 50: 105-111
  • Eroğlu A., Aksoy N., 2003. Jeotermal Suların Kimyasal Analizi. VI. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi Bildiriler Kitabı, 143-183
  • Fabryka-Martin J.T., 1984. Natural Iodine-129 As Environmental Tracer. University of Arizona. MSc. Thesis, 149 p.
  • Fabryka-Martin J.T., Bentley H., Elmore D. and Airey P.L., 1985. Natural Iodine-129 As Environmental Tracer. Geochim. Cosmochim. Acta, 49: 337-347
  • Fabryka-Martin J.T., Davis S.N. and Elmore D., 1987. Applications of 129I and 36Cl in Hydrogeology. Nucl. Instrum. Methods Phys. Res., B29: 361-371
  • Fehn U., 2012. Tracing Crustal Fluids: Applications of Natural 129I and 36Cl. Annu. Rev. Earth Planet. Sci, 40: 45-67
  • Fehn U., Moran J.E., Snyder G.T., Muramatsu Y., 2007a. The Initial 129I/I Ratio and the Presence of “Old” Iodine in Continental Margins. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259: 496-502
  • Fehn U., Snyder G.T., Muramatsu Y., 2007b. Iodine as A Tracer of Organic Material: 129I Results from Gas Hydrate Systems and Fore Arc Fluids. Journal of Geochemical Exploration. 95(1-3): 66-80
  • Fehn U., Snyder G.T., 2003. Origin of Iodine and 129I in Volcanic and Geothermal Fluids from the North Island of New Zealand: Implications for Subduction Zone Processes. Economic Geology, Special Publications, 10: 159-170
  • Fehn U., Snyder G.T., 2003. Origin of Iodine and 129I in Volcanic and Geothermal Fluids from the North Island of New Zealand: Implications for Subduction Zone Processes. Economic Geology, Special Publications, 10: 159-170
  • Fehn U., Peters E.K., Tullai-Fitzpatrick S., Kubik P.W., Sharma P., Teng R.T.D., Gove H.E., Elmore D., 1992. 129I and 36Cl Concentrations in Waters of the Eastern Clear Lake Area, California: Residence Times and Source Ages of Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 56: 2069-2079
  • Fehn U., Tullai-Fitzpatrick S., Teng R.T.D., Gove H.E., Kubik P.W., Sharma P., Elmore D., 1990. Dating of Oil Field Brines Using 129I. Nuclear Instruments and Methods in Physics Research B52: 446-450
  • Fehn U., Tullai S., Teng R.T.D., Elmore D., Kubik P.W., 1987. Determination of 129I in Heavy Residues of Two Crude Oils. Nucl. Instrum. Methods Phys. Res., B52: 446-450
  • Fu Y., Zhan H., 2009. On the Origin of Oil-Field Water in the Biyang Depression of China. Environmental Geology, 58: 1191-1196
  • Fuge R., Johnson C.C., 1986. The Geochemistry of Iodine - A Review. Environ. Geochem. Health. 8(2): 31-54
  • Gallagher A.V., 1984. Iodine: A Pathfinder for Petroleum Deposits. in Unconventional Methods in Exploration III, Southern Methodist University, Dallas, TX, pp. 148-159
  • Ginis Y.V., 1966. Hydrogeological Conditions and Hydrochemistry of Iodine-Bromine Waters in the Kura Lowlands and Prospects of Exploration for New Fields. Dissertation. Baku
  • Gieskes J.M., Mahn C., 2007. Halide Systematics in Interstitial Waters of Ocean Drilling Sediment Cores. Appl. Geochem., 22: 515-533
  • Gordon T.L., Ikramuddin M., 1988. The Use of Iodine and Selected Trace Metals in Petroleum and Gas Exploration. Geologic Society of America Abstracts with Programs, 20(7): 228.
  • Goudge C.K., 2007. Geochemical Exploration, Sample Collection and Survey Design in Society of Independent Professional Earth Scientists Quarterly, v. XXXXIIII, no. 1.
  • Goudge C.K., 2009. Graystone Exploration Labs Inc, Golden, Colorado. Retrieved from www.graystonelab.com
  • Guliev I.S., Mamedov P.Z., Feyzullayev A.A., Huseynov D.A. Kadirov F.A., Aliyeva E.H.M., Tagiyev M.F., 2003. Hydrocarbon Systems of the South Caspian Basin. Baku, Nafta-Press, 206 p.
  • Guliev I.S., Feizullayev A.A., 1996. Geochemistry of Hydrocarbon Seepages in Azerbaijan. in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66: 63-70
  • Harkness J.S., Dwyer G.S., Warner N.R., Parker K.M., William A., Mitch W.A., Vengosh A., 2015. Iodide, Bromide and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications. Environ. Sci. Technol. DOI: 10.1021/es504654n
  • Harvey G.R., 1980. A Study of the Chemistry of Iodine and Bromine in Marine Sediments. Marine Chemistry 8: 327-332
  • Hora K., 2016. Iodine Production and Industrial Applications. IDD Newsletter, http://www.ign.org/newsletter/idd_aug16_iodine_production.pdf Hoşhan P., Çelik S., Çanga B., 2008. Inspection and Control of Corrosion Problems for Production Oil Wells Tubing and Rod in Adıyaman Oil Fields. International Corrosion Symposium, Izmir, Turkey, 13-20
  • Houston S.J., 2007. Formation Waters in Petroleum Reservoirs; Their Controls and Applications. The University of Leeds, School of Earth and Environment, PhD Thesis, 240 p.
  • Hummel S., 2011. The Use of Iodine to Characterize Formation Waters in Oil and Gas Fields. Syracuse University. MSc. Thesis, 66 p.
  • İnan A., 1982. Azerbaycan’ın Çamur Volkanları. Yeryuvarı ve İnsan, 7(1): 4-5
  • Jin Z., Cao J., Hu W., Zhang Y., Yao S., Wang X., Zhang Y., Tang Y., Shi X., 2008. Episodic Petroleum Fluid Migration in Fault Zones of the Northwestern Junggar Basin (Northwest China): Evidence from Hydrocarbon-Bearing Zoned Calcite Cement. AAPG Bulletin, 92, 9: 1225-1243
  • Kartsev A.A., Tabasaranskii S.A., Subbota M.I., Mogilevsky G.A., 1959. Geochemical Methods of Prospecting and Exploration for Petroleum and Natural Gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 238 p.
  • Kendrick M.A., Phillips D., Wallace M., Miller J.McL., 2011. Halogens and Noble Gases in Sedimentary Formation Waters and Zn-Pb Deposits: A Case Study from the Lennard Shelf, Australia. Applied Geochemistry, 26: 2089-2100
  • Kennedy H.A., Elderfiel H., 1987. Iodine Diagenesis in Pelagic Deep-Sea Sediments. Geochimica et Cosmochimica Acta, 51: 2489-2504 Kharaka Y.K., Hanor J.S., 2007. Deep Fluids in the Continents: I. Sedimentary Basins. Treatise on Geochemistry, 5: 1-48
  • Kim R., Kim J., Ryu J., Chang H., 2006. Salinization Properties of A Shallow Groundwater in A Coastal Reclaimed Area, Yeonggwang, Korea. Environmental Geology, 49: 1180-1194
  • Knipe R.J., 1993. The Influence of Fault Zone Processes and Diagenesis on Fluid Flow. In: Diagenesis and Basin Development (Ed. by E. D. Horbury and A. G. Robinson), Amer. Ass. Petrol. Geol. Studies in Geology, 36: 135-154
  • Knott D., 1998. Elf Details Caspian Sea Exploration Plans. Oil & Gas Journal, 96: 15
  • Kokh A.A., Novikov D.A., 2014. Hydrodynamic Conditions and Vertical Hydrogeochemical Zonality of Groundwater in the Western Khatanga Artesian Basin. Water Resources, 41(4): 396-405
  • Kurchikov A.R., Plavnik A.G., 2009. Clustering of Groundwater Chemistry Data with Implications for Reservoir Appraisal in West Siberia. Russian Geology and Geophysics 50: 943-949
  • Kudel’sky A.V., 1977. Prediction of Oil and Gas Properties on A Basis of Iodine Content of Subsurface Waters. Geologiya Nefti i Gaza, 4: 45-49
  • Land L.S., 1991. Evidence for Vertical Movement of Fluids, Gulf Coast Sedimentary Basin. Geophys. Res. Lett., 18(5): 919-922
  • Lawrence S.R., Cornfordt C., 1995. Basin Geofluids. Basin Research, 7: 1-7
  • Leaver J.S., Thomasson M.R. 2002. Case Studies Relating Soil-Iodine Geochemistry to Subsequent Drilling Results. in Schumacher, D., and LeSchack, L. D., eds., Surface Exploration Case Histories: Application of Geochemistry, Magnetics and Remote Sensing, AAPG Studies in Geology no. 48, and SEG Geophysical References Series no. 11: 41-57
  • Lee R., Seright R., Hightower M., Sattler A., Cather M., McPherson B., Wrotenbery L., Martin D., Whitworth M., 2002. Strategies for Produced Water Handling in New Mexico. Groundwater Protection Council Produced Water Conference, http://www.gwpc.org/meetings/special/PW%202002/Papers/ Robert_Lee_PWC2002.pdf
  • Lemay T.G., Konhauser K.O., 2006. Water Chemistry of Coalbed Methane Reservoirs. Alberta Geological Survey. Special Report 081. 354 p.
  • Levinson A.A., 1980. Introduction to Exploration Geochemistry, Applied Publishing, IL, p. 924.
  • Li K., Cai C., He H., Jiang L., Cai L., Xiang L., Huang S., Zhang C., 2011. Origin of Palaeo Waters in the Ordovician Carbonates in Tahe Oilfield, Tarim Basin: Constraints from Fluid Inclusions and Sr, C and O Isotopes. Geofluids, 11: 71-86
  • Lloyd J.W., Howard K.W.F., Pacey N.R., Tellam J.H., 1982. The Value of Iodide as A Parameter in the Chemical Characterization of Groundwaters. Journal of Hydrology, 57: 247-265
  • Liu X., Fehn U., Teng R.T.D., 1997. Oil Formation and Fluid Convection in Railroad Valley, NV: A Study Using Cosmogenic Isotopes to Determine the Onset of Hydrocarbon Migration. Nuclear Instruments and Methods in Physics Research B 123: 356-360
  • Lu Z., Hummel S.T., Lautz L.K., Hoke G.D., Zhou X., Leone J., Siegel D.I., 2015. Iodine as A Sensitive Tracer for Detecting Influence of Organic-Rich Shale in Shallow Groundwater. Applied Geochemistry, 60: 29-36
  • Mani D., Kumar T.S., Rasheed M.A., Patil D.J., Dayal A.M., Rao T.G., Balaram V., 2011. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting. Natural Resources Research, 20(1): 75-88
  • Martin J.B., Gieskes J.M., Torres M., Kastner M., 1993. Bromine and Iodine in Peru Margin Sediments and Pore Fluids: Implications for Fluid Origins. Geochimico et Cosmochimica Acta, 51: 4377-4389
  • Mazzini M., Svensen H., Planke S., Guliyev I., Akhmanov G.G., Fallik T., Banks D., 2009. When Mud Volcanoes Sleep: Insight from Seep Geochemistry at the Dashgil Mud Volcano, Azerbaijan. Marine and Petroleum Geology, 26: 1704-1715
  • Means J.L., Hubbard N.J., 1987. Short-Chain Aliphatic Acid Anions in Deep Subsurface Brines: A Review of Their Origin, Occurrence, Properties, and Importance and New Data on Their Distribution and Geochemical Implications in the Palo Duro Basin, Texas. Org. Geochem. 11(3): 177-191
  • Moran J.E., Fehn U., Hanor J.S., 1995. Determination of Source Ages and Migration of Brines from the U.S. Gulf Coast Basin Using 129I. Geochim. Cosmochim. Acta 59, 5055-5069
  • Moran, J.E., Fehn, U., Ray, T.D., 1998. Variations in 129I/127I in Recent Marine Sediments: Evidence for A Fossil Organic Component. Chem. Geol., 152: 193-203
  • Muramatsu Y., Wedepohl K.H., 1998. The Distribution of Iodine in the Earth’s Crust. Chemical Geology, 147: 201-216
  • Muramatsu Y., Yoshida S., Fehn U., Amachi S., Ohmomo Y., 2004. Studies with Natural and Anthropogenic Iodine Isotopes: Iodine Distribution and Cycling in the Global Environment. Journal of Environmental Radioactivity, 74: 221-232
  • Muramatsu Y., Doi T., Tomaru H., Fehn U., Takeuchi R., Matsumoto R., 2007. Halogen Concentrations in Pore Waters and Sediments of the Nankai Trough, Japan: Implications for The Origin of Gas Hydrates. Appl. Geochem., 22: 534-556
  • Novikov D.A., 2012. Hydrogeology of Oil-And-Gas Bearing Deposits of the Severnyi Arch (Northern Areas of the West Siberian Megabasin (WSMB). Oil and Gas Business, 4: 521-535
  • Novikov D.A., 2013a. Hydrogeochemical Features of Petroleum-Bearing Deposits of the Yamal Peninsula. Oil and Gas Business, 1: 114-143
  • Novikov D.A., 2013b. Hydrogeology of the Western Part of the Yenisei-Khatanga Regional Trough. Neftegazovaya Geologiya, Teoriya I Praktika, 8(1), www.ngtp.ru/rub/4/2_2013.eng.pdf
  • Okandan E., Mehmetoğlu T., Doyuran V., Demiral B., Parlaktuna M., Gümrah F., Kuru E., Behlülgil K., Karacan Ö., Karaaslan U., 1994. Petrol Arama ve Üretim Faaliyetlerinin Çevre Üzerindeki Etkisi, Proje No.YBAG-0057, 92 s. (Yayımlanmamış)
  • Oppo D., Capozzi R., Nigarov A., Esenov P., 2014. Mud Volcanism and Fluid Geochemistry in the Cheleken Peninsula, Western Turkmenistan. Marine and Petroleum Geology, 57: 122-134
  • Oppo D., Capozzi R., 2015. Spatial Association of Mud Volcano and Sandstone Intrusions, Boyadag Anticline, Western Turkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136
  • Osborn S.G., Mcintosh J.C., Hanor J.S., Biddulph D., 2012. Iodine-129, 87Sr/86Sr, and Trace Elemental Geochemistry of Northern Appalachian Basin Brines: Evidence for Basinal-Scale Fluid Migration and Clay Mineral Diagenesis. American Journal of Science, 312: 263-287
  • Özdemir A., 2009. İyot Üretimi Amaçlı Yapılan Sondaj Çalışmaları. Madencilik Türkiye Dergisi, 1: 26-28
  • Özdemir A., 2018a. Güneydoğu Anadolu Havzasında Petrol ile İyot İlişkisi. MTA Dergisi http://dx.doi.org/10.19076/mta.464160
  • Özdemir A., 2018b. Suda TPH (Toplam Petrol Hidrokarbonları) Analizinin Petrol ve Doğalgaz Arama Amaçlı Kullanımı: Türkiye’den İlk Önemli Sonuçlar. Mühendislik Bilimleri ve Tasarım Dergisi (baskıda)
  • Özdemir A., 2018c. Relationships of Formation, Migration and Trapping between Petroleum and Iodine. Natural and Engineering Sciences (baskıda)
  • Özdemir A., 2018d. Türkiye’nin İyotça Zengin Suları ve Petrol ve Doğalgaz Potansiyeli. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi (baskıda)
  • Özdemir A., 2018e. Hasanoğlan (Ankara) Petrol Sisteminin Organik Hidrojeokimyasal Kanıtları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, doi: 10.5505/pajes.2018.12316
  • Özdemir A., Turgay S.O., Şahinoğlu A., 2018. High Accuracy Estimation with Computer-Aided Hydrogeochemical Methods of Oil and Gas Deposits in Wildcat Sedimentary Basins. Journal of Applied Geology and Geophysics, 6(4): 62-104
  • Parker K.M., Zeng T., Harkness J., Vengosh A., Mitch, V.A., 2014. Enhanced Formation of Disinfection by Products in Shale Gas Wastewater-Impacted Drinking Water Supplies. Environ. Sci. Technol., 48: 11161-11169
  • Planke S., Svensen H., Hovland M., Banks D.A., Jamtveit, B., 2003. Mud and Fluid Migration in Active Mud Volcanoes in Azerbaijan. Geo-Mar. Lett. 23: 258-268
  • Potter II, R.W., Harrington P.A., Silliman A.H., Viellenave J.H., 1996. Significance of Geochemical Anomalies in Hydrocarbon Exploration. in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66: 431-439
  • Price N.B., Calvert S.E., 1977. The Contrasting Geochemical Behaviors of Iodine and Bromine in Recent Sediments from the Namibian Shelf. Geochimica et Cosmochimica Acta 41: 1769-1775
  • Qiao X., Zhang Z., Yu J., Ye X., 2008. Performance Characteristics of a Hybrid Membrane Pilot-Scale Plant for Oilfield-Produced Wastewater. Desalination, 225(1-3): 113-122
  • Reich M., Snyder G.T., Álvarez F., Pérez A., Palacios C., Vargas G., Cameron E.M., Muramatsu Y., Fehn U., 2013. Using Iodine Isotopes to Constrain Supergene Fluid Sources in Arid Regions: Insights from the Chuquicamata Oxide Blanket. Economic Geology, 108: 163-171
  • Reichter B.C., Kreitler C.W., 1993. Geochemical Techniques for Identifying Sources of Groundwater Salinitization. CRC Press, 272 p.
  • Rogers S.G., 1917. Chemical Relations of the Oil-Field Waters in San Joaquin Valley, California. United States Geological Survey. 119 p.
  • Sakroon S.A., 2008. Effect of Oilfield Brine on Groundwater Quality in Marmul Area, Sultanate of Oman. United Arab Emirates University, MSc. Thesis, 146 p.
  • Schoeneich K., 1971. Indices of Oil Bearing Deposits as Based on the Formation Waters of Poland. Nafta (Pol.), 27: 154-157 (in Coustau H., 1977. Formation waters and hydrodynamics. Journal of Geochemical Exploration, 7: 213-241)
  • Senger K., Millett J., Planke S., Ogata K., Eide C.H., Festøy M., Galland O., Jerram D.A., 2017. Effects of Igneous Intrusions on the Petroleum System: A Review. First Break, 35: 1-10
  • Shi P., Fu B., Ninomiya Y., Sun J., Li Y., 2012. Multispectral Remote Sensing Mapping for Hydrocarbon Seepage-Induced Lithologic Anomalies in the Kuqa Foreland Basin, South Tian Shan. Journal of Asian Earth Sciences, 46: 70-77
  • Singh R.R., Saxena J.G., Sahota S.K., Chandra K., 1987. On the Use of Iodine as an Indicator of Petroleum in Indian Basins, 1st India Oil and Natural Gas Comm. Petroleum Geochemistry and Exploration in the Afro-Asian Region International Conference Proceedings, pp. 105-107
  • Stueber A.M., Walter L.M., Huston T.J., Pushkar P., 1993. Formation Waters from Mississippian-Pennsylvanian Reservoirs, Illinois Basin, USA: Chemical and Isotopic Constraints on Evolution and migration. Geochimica et Cosmochimica Acta. 57, 163-784
  • Snyder, G.T., Fehn, U., 2002. Origin of Iodine in Volcanic Fluids: 129I Results from The Central American Volcanic Arc. Geochimica et Cosmochimica Acta, 66(21): 3827-3838
  • Snyder G.T., Fabryka-Martin J.T., 2007. 129I and 36Cl in Dilute Hydrocarbon Waters: Marine-Cosmogenic, In Situ, and Anthropogenic Sources. In: G.T. Snyder & J.E. Moran (Eds.), special issue: The halogens and their isotopes in marine and terrestrial aqueous systems, Applied Geochemistry, 22: 692-704
  • Tedesco S.A., 1995. Surface Geochemistry in Petroleum Exploration. Springer-Science+Business Media, BV., p. 206.
  • Tedesco S.A., Goudge C., Fausnaugh J., Alexon S., 1987. Iodine-An Exploration Tool for Oil and Gas. Oil & Gas Journal, 85(26): 74-77
  • Tedesco S., Goudge C., 1989. Application of Iodine Surface Geochemistry in the Denver-Julesburg Basin. Association of Petroleum Geochemical Explorationists Bulletin, 5(I): 49-72
  • Tellam J.H., 1995. Hydrochemistry of the Saline Groundwaters of the Lower Mersey Basin Permo-Triassic Sandstone Aquifer, UK. Journal of Hydrology, 165: 45-84
  • Togo Y.S., Takahashi Y., Amano Y., Matsuzaki H., Suzuki Y., Terada Y., Muramatsu Y., Ito, K., Iwatsuki T., 2016. Age and Speciation of Iodine in Groundwater and Mudstones of the Horonobe Area, Hokkaido, Japan: Implications for the Origin and Migration of Iodine During Basin Evolution. Geochimica et Cosmochimica Acta. http://dx.doi.org/10.1016/j.gca.2016.07.012
  • Togo Y.S., Kazahaya K., Tosaki Y., Morikawa N., Matsuzaki H., Takahashi M., Sato T., 2014. Groundwater, Possibly Originated from Subducted Sediments, in Joban and Hamadori Areas, Southern Tohoku, Japan. Earth, Planets and Space, 66, 131
  • Tomaru H., Lu Z., Fehn U., Muramatsu Y., 2009a. Origin of Hydrocarbons in the Green Tuff Region of Japan: 129I Results from Oil Field Brines and Hot Springs in the Akita and Niigata Basins. Chemical Geology, 264: 221-231
  • Tomaru H., Fehn U., Lu Z., Takeuchi R., Inagaki F., Imachi H., Kotani R., Matsumoto R., Aoike K., 2009b. Dating of Dissolved Iodine in Pore Waters from the Gas Hydrate Occurrence Offshore Shimokita Peninsula, Japan: 129I Results from The D/V Chikyu Shakedown Cruise. Resource Geology, 59(4): 359-373
  • Tsunogai S., 1971. Iodine in the Deep Water of the Ocean. Deep Sea Research and Oceanographic Abstracts, 18: 913-919
  • Tullai S., Tubbs L. E., Fehn U., 1987. Iodine Extraction from Petroleum for Analysis of 129I/I Ratios by AMS. Nucl. Instrum. Methods Phys. Res. B, 29: 383-386
  • Urazov G.G., 1919. Baku Iodine Lakes. Materials for the Study of Russian Natural Manufacturing Forces. Petrograd.
  • UNDP, 2007. Groundwater Resources of the Kura-Aras River Basin. 30 p. http://aoa.pbe.eea.europa.eu/tools/virtual_library/bibliography-details-each-assessment/answer_4398130913/w_assessment-upload/index_html?as_attachment:int=1
  • UNESCO, 2004 (Zektser, I.S. and Everett, L.G., eds.). Groundwater Resources of the World and Their Use. 346 p.
  • USGS, 2007. Assessment of Undiscovered Natural Gas Resources of the Sacramento Basin Province of California. Fact Sheet 2007-3014
  • U.S. 2017. Geological Survey National Produced Waters Geochemical Database v2.2. https://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters.aspx Veil J.A., 2006. Comparison of Two International Approaches to Controlling Risk from Produced Water Discharges. Paper presented at the 70th PERF meeting, Paris, France
  • Warren J.K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin Heidelberg. 1035 p.
  • White D.E., 1957. Thermal Waters of Volcanic Origin. Bulletin of the Geological Society of America, 68: 1637-1668
  • Whittemore D.O., Basel C.L., Galle O.K., Waugh T.C., 1981. Geochemical Identification of Saltwater Sources in the Smoky Hill River Valley, Mcpherson, Saline, and Dickson Countries, Kansas. Kansas Geological Survey, Open-file Report 81-6, p. 78
  • Wilke-Dörfurt E., 1927. Über den Jodgehalt einiger Gesteine und seine Beziehungen zum chemischen Teil des Kropfproblems. Ann. Chem., 453: 288 (in Correns, C.W., 1956. The Geochemistry of the Halogens. Physics and Chemistry of the Earth, 1: 181-233)
  • Worden R.H., 1996. Controls on Halogen Concentrations in Sedimentary Formation Waters. Mineralogical Magazine, 60: 259-274
  • Xun Z., Cijun L., Xiumin J., Qiang D., Lihomg T., 1997. Origin of Subsurface Brines in the Sichuan Basin. Groundwater, 35(1): 53-58
  • Yang S. 2017. Fundamentals of Petrophysics. Springer-Verlag GmbH, 502 p.
  • Zonn I.S., Kostianoy A.G., Kosarev A.N., Glantz M.H., 2010. The Caspian Sea Encyclopedia. Springer-Verlag Berlin Heidelberg. 525 p.

Occurrence Mechanisms of Iodine-rich Surface Waters and Groundwaters and Their Relations with Oil and Gas Deposits

Year 2018, Volume: 4 Issue: 2, 149 - 185, 17.12.2018
https://doi.org/10.28979/comufbed.440738

Abstract

In this study, occurrence
mechanisms of iodine-rich surface waters and groundwaters and the relationship
between iodine-rich waters and petroleum systems were investigated. For this
purpose, Western Caspian (Azerbaijan), Eastern Caspian (Turkmenistan),
Sacramento (USA), Po (Italy) and Joban - Hamadori (Japan) petroliferous basins
with published hydrogeochemical data of iodine-rich surface waters and
groundwaters were selected. Iodine enrichment in the surface waters and
groundwaters of these basins, which contain oil and gas deposits, are
iodine-rich reservoir waters and hydrocarbons that migrate from the deep oil
and gas deposits to the surface and near the surface with the effect of
tectonic, volcanic and other geological events. Iodine in the surface waters
and groundwaters of investigated petroliferous basins are the same origin as
iodine in oilfield waters and derived from organic-rich rocks. Therefore, the
geological and hydrogeochemical data of investigated basins prove the close
relationship between iodine-rich surfaces and groundwaters (these waters are
also rich by petroleum hydrocarbons) and petroleum systems. This close
relationship shows that the potential of a basin with an unknown potential for
oil and gas can be evaluated by iodine analysis on the cold and hot surface waters
and groundwaters. This relationship is also important in terms of determining
future exploration targets.



 

References

  • Allexan S., Fausnaugh J., Goudge C., Tedesco S., 1986. The Use of Iodine in Geochemical Exploration for Hydrocarbons. Assoc. of Petroleum Geochemical Explorationist, II, 1, 12/86: 71-93
  • Birkle P., 2005. Compositional Link Between Thermal Fluids in Mexican Deep Reservoirs. Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005
  • Bohlke J.K., Irwin J.J., 1992. Laser Microprobe Analyses of Cl, Br, I and K in Fluid Inclusions: Implications for Sources of Salinity in Some Ancient Hydrothermal Fluids. Geochim. Cosmochim. Acta, 56: 201-225
  • Bojarski L., 1970. Die Anwendung der Hydrochemischen Klassifikation bei Sucharbeiten auf Erdol. 2. Angew. Geol., 16:123-125 (in Collins, A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science, 1, Elsevier Scientific Publishing Company, Amsterdam, 496 p.)
  • Boschetti T., Toscani L., Shouakar-Stash O., Iacumin P., Venturelli G., Mucchino C., Frape S.K., 2011. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquatic Geochemistry, 17: 71-108
  • Campos J.C., Borges R.M.H., Filho A.M.O., Nobrega R., Sant’Anna Jr. G.L., 2002. Oilfield Wastewater Treatment by Combined Microfiltration and Biological Processes. Water Research, 36, 95-104
  • Chen J., Liu D., Peng P., Ning C., Xiaolin H., Baoshou Z., 2016. Iodine-129 Chronological Study of Brines from an Ordovician Paleokarst Reservoir in the Lunnan Oilfield, Tarim Basin. Applied Geochemistry, 65: 14-21
  • Collins A.G., 1969. Chemistry of Some Anadarko Basin Brines Containing High Concentration of Iodine. Chemical Geology, 4: 169-187
  • Collins A.G., Egleeson G.C., 1967. Iodine Abundance in Oilfield Brines in Oklahoma. Science, 156: 934-935
  • Collins A.G., Bennett J.H., Manuel O.H., 1971. Iodine and Algae in Sedimentary Rocks Associated with Iodine Rich Brines. Geol. Soc. Am. Bull., 82: 2607-2610
  • Collins A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science-1, Elsevier, 496 p.
  • Cosgrove M.E., 1970. Iodine in Bituminous Kimmeridge Shale of the Dorset Coast in England. Geochim. Cosmochim. Acta: 34, 830-836
  • Coustau H., 1977. Formation Waters and Hydrodynamics. Journal of Geochemical Exploration, 7: 213-241
  • Çelik M., Sarı A., 2002. Geochemistry of Formation Waters from Upper Cretaceous Calcareous Rocks of Southeast Turkey. Journal Geological Society of India. 59: 419-430
  • Dean G.A., 1963. The Iodine Content of Some New Zealand Drinking Waters with A Note on the Contribution from Sea Spray to the Iodine in Rain. New Zealand J. Science, 6: 208-214
  • Djunin V.I. and Korzun A.V., 2010. Hydrogeodynamics of Oil and Gas Basins. Springer Science+Business Media B.V., DOI 10.1007/978-90-481-2847-1, 395 p.
  • Edmunds W.M., 1973. Trace Element Variations Across an Oxidation-Reduction Barrier in A Limestone Aquifer. Proceedings of Symposium on Hydrogeochemistrv and Biogeochemistrv, Tokyo, 7-9 September 1970, 500-526
  • Elderfield H., Truesdale V.W., 1980. On the Biophilic Nature of Iodine in Sea Water. Earth Planet. Sci. Lett. 50: 105-111
  • Eroğlu A., Aksoy N., 2003. Jeotermal Suların Kimyasal Analizi. VI. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi Bildiriler Kitabı, 143-183
  • Fabryka-Martin J.T., 1984. Natural Iodine-129 As Environmental Tracer. University of Arizona. MSc. Thesis, 149 p.
  • Fabryka-Martin J.T., Bentley H., Elmore D. and Airey P.L., 1985. Natural Iodine-129 As Environmental Tracer. Geochim. Cosmochim. Acta, 49: 337-347
  • Fabryka-Martin J.T., Davis S.N. and Elmore D., 1987. Applications of 129I and 36Cl in Hydrogeology. Nucl. Instrum. Methods Phys. Res., B29: 361-371
  • Fehn U., 2012. Tracing Crustal Fluids: Applications of Natural 129I and 36Cl. Annu. Rev. Earth Planet. Sci, 40: 45-67
  • Fehn U., Moran J.E., Snyder G.T., Muramatsu Y., 2007a. The Initial 129I/I Ratio and the Presence of “Old” Iodine in Continental Margins. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259: 496-502
  • Fehn U., Snyder G.T., Muramatsu Y., 2007b. Iodine as A Tracer of Organic Material: 129I Results from Gas Hydrate Systems and Fore Arc Fluids. Journal of Geochemical Exploration. 95(1-3): 66-80
  • Fehn U., Snyder G.T., 2003. Origin of Iodine and 129I in Volcanic and Geothermal Fluids from the North Island of New Zealand: Implications for Subduction Zone Processes. Economic Geology, Special Publications, 10: 159-170
  • Fehn U., Snyder G.T., 2003. Origin of Iodine and 129I in Volcanic and Geothermal Fluids from the North Island of New Zealand: Implications for Subduction Zone Processes. Economic Geology, Special Publications, 10: 159-170
  • Fehn U., Peters E.K., Tullai-Fitzpatrick S., Kubik P.W., Sharma P., Teng R.T.D., Gove H.E., Elmore D., 1992. 129I and 36Cl Concentrations in Waters of the Eastern Clear Lake Area, California: Residence Times and Source Ages of Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 56: 2069-2079
  • Fehn U., Tullai-Fitzpatrick S., Teng R.T.D., Gove H.E., Kubik P.W., Sharma P., Elmore D., 1990. Dating of Oil Field Brines Using 129I. Nuclear Instruments and Methods in Physics Research B52: 446-450
  • Fehn U., Tullai S., Teng R.T.D., Elmore D., Kubik P.W., 1987. Determination of 129I in Heavy Residues of Two Crude Oils. Nucl. Instrum. Methods Phys. Res., B52: 446-450
  • Fu Y., Zhan H., 2009. On the Origin of Oil-Field Water in the Biyang Depression of China. Environmental Geology, 58: 1191-1196
  • Fuge R., Johnson C.C., 1986. The Geochemistry of Iodine - A Review. Environ. Geochem. Health. 8(2): 31-54
  • Gallagher A.V., 1984. Iodine: A Pathfinder for Petroleum Deposits. in Unconventional Methods in Exploration III, Southern Methodist University, Dallas, TX, pp. 148-159
  • Ginis Y.V., 1966. Hydrogeological Conditions and Hydrochemistry of Iodine-Bromine Waters in the Kura Lowlands and Prospects of Exploration for New Fields. Dissertation. Baku
  • Gieskes J.M., Mahn C., 2007. Halide Systematics in Interstitial Waters of Ocean Drilling Sediment Cores. Appl. Geochem., 22: 515-533
  • Gordon T.L., Ikramuddin M., 1988. The Use of Iodine and Selected Trace Metals in Petroleum and Gas Exploration. Geologic Society of America Abstracts with Programs, 20(7): 228.
  • Goudge C.K., 2007. Geochemical Exploration, Sample Collection and Survey Design in Society of Independent Professional Earth Scientists Quarterly, v. XXXXIIII, no. 1.
  • Goudge C.K., 2009. Graystone Exploration Labs Inc, Golden, Colorado. Retrieved from www.graystonelab.com
  • Guliev I.S., Mamedov P.Z., Feyzullayev A.A., Huseynov D.A. Kadirov F.A., Aliyeva E.H.M., Tagiyev M.F., 2003. Hydrocarbon Systems of the South Caspian Basin. Baku, Nafta-Press, 206 p.
  • Guliev I.S., Feizullayev A.A., 1996. Geochemistry of Hydrocarbon Seepages in Azerbaijan. in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66: 63-70
  • Harkness J.S., Dwyer G.S., Warner N.R., Parker K.M., William A., Mitch W.A., Vengosh A., 2015. Iodide, Bromide and Ammonium in Hydraulic Fracturing and Oil and Gas Wastewaters: Environmental Implications. Environ. Sci. Technol. DOI: 10.1021/es504654n
  • Harvey G.R., 1980. A Study of the Chemistry of Iodine and Bromine in Marine Sediments. Marine Chemistry 8: 327-332
  • Hora K., 2016. Iodine Production and Industrial Applications. IDD Newsletter, http://www.ign.org/newsletter/idd_aug16_iodine_production.pdf Hoşhan P., Çelik S., Çanga B., 2008. Inspection and Control of Corrosion Problems for Production Oil Wells Tubing and Rod in Adıyaman Oil Fields. International Corrosion Symposium, Izmir, Turkey, 13-20
  • Houston S.J., 2007. Formation Waters in Petroleum Reservoirs; Their Controls and Applications. The University of Leeds, School of Earth and Environment, PhD Thesis, 240 p.
  • Hummel S., 2011. The Use of Iodine to Characterize Formation Waters in Oil and Gas Fields. Syracuse University. MSc. Thesis, 66 p.
  • İnan A., 1982. Azerbaycan’ın Çamur Volkanları. Yeryuvarı ve İnsan, 7(1): 4-5
  • Jin Z., Cao J., Hu W., Zhang Y., Yao S., Wang X., Zhang Y., Tang Y., Shi X., 2008. Episodic Petroleum Fluid Migration in Fault Zones of the Northwestern Junggar Basin (Northwest China): Evidence from Hydrocarbon-Bearing Zoned Calcite Cement. AAPG Bulletin, 92, 9: 1225-1243
  • Kartsev A.A., Tabasaranskii S.A., Subbota M.I., Mogilevsky G.A., 1959. Geochemical Methods of Prospecting and Exploration for Petroleum and Natural Gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 238 p.
  • Kendrick M.A., Phillips D., Wallace M., Miller J.McL., 2011. Halogens and Noble Gases in Sedimentary Formation Waters and Zn-Pb Deposits: A Case Study from the Lennard Shelf, Australia. Applied Geochemistry, 26: 2089-2100
  • Kennedy H.A., Elderfiel H., 1987. Iodine Diagenesis in Pelagic Deep-Sea Sediments. Geochimica et Cosmochimica Acta, 51: 2489-2504 Kharaka Y.K., Hanor J.S., 2007. Deep Fluids in the Continents: I. Sedimentary Basins. Treatise on Geochemistry, 5: 1-48
  • Kim R., Kim J., Ryu J., Chang H., 2006. Salinization Properties of A Shallow Groundwater in A Coastal Reclaimed Area, Yeonggwang, Korea. Environmental Geology, 49: 1180-1194
  • Knipe R.J., 1993. The Influence of Fault Zone Processes and Diagenesis on Fluid Flow. In: Diagenesis and Basin Development (Ed. by E. D. Horbury and A. G. Robinson), Amer. Ass. Petrol. Geol. Studies in Geology, 36: 135-154
  • Knott D., 1998. Elf Details Caspian Sea Exploration Plans. Oil & Gas Journal, 96: 15
  • Kokh A.A., Novikov D.A., 2014. Hydrodynamic Conditions and Vertical Hydrogeochemical Zonality of Groundwater in the Western Khatanga Artesian Basin. Water Resources, 41(4): 396-405
  • Kurchikov A.R., Plavnik A.G., 2009. Clustering of Groundwater Chemistry Data with Implications for Reservoir Appraisal in West Siberia. Russian Geology and Geophysics 50: 943-949
  • Kudel’sky A.V., 1977. Prediction of Oil and Gas Properties on A Basis of Iodine Content of Subsurface Waters. Geologiya Nefti i Gaza, 4: 45-49
  • Land L.S., 1991. Evidence for Vertical Movement of Fluids, Gulf Coast Sedimentary Basin. Geophys. Res. Lett., 18(5): 919-922
  • Lawrence S.R., Cornfordt C., 1995. Basin Geofluids. Basin Research, 7: 1-7
  • Leaver J.S., Thomasson M.R. 2002. Case Studies Relating Soil-Iodine Geochemistry to Subsequent Drilling Results. in Schumacher, D., and LeSchack, L. D., eds., Surface Exploration Case Histories: Application of Geochemistry, Magnetics and Remote Sensing, AAPG Studies in Geology no. 48, and SEG Geophysical References Series no. 11: 41-57
  • Lee R., Seright R., Hightower M., Sattler A., Cather M., McPherson B., Wrotenbery L., Martin D., Whitworth M., 2002. Strategies for Produced Water Handling in New Mexico. Groundwater Protection Council Produced Water Conference, http://www.gwpc.org/meetings/special/PW%202002/Papers/ Robert_Lee_PWC2002.pdf
  • Lemay T.G., Konhauser K.O., 2006. Water Chemistry of Coalbed Methane Reservoirs. Alberta Geological Survey. Special Report 081. 354 p.
  • Levinson A.A., 1980. Introduction to Exploration Geochemistry, Applied Publishing, IL, p. 924.
  • Li K., Cai C., He H., Jiang L., Cai L., Xiang L., Huang S., Zhang C., 2011. Origin of Palaeo Waters in the Ordovician Carbonates in Tahe Oilfield, Tarim Basin: Constraints from Fluid Inclusions and Sr, C and O Isotopes. Geofluids, 11: 71-86
  • Lloyd J.W., Howard K.W.F., Pacey N.R., Tellam J.H., 1982. The Value of Iodide as A Parameter in the Chemical Characterization of Groundwaters. Journal of Hydrology, 57: 247-265
  • Liu X., Fehn U., Teng R.T.D., 1997. Oil Formation and Fluid Convection in Railroad Valley, NV: A Study Using Cosmogenic Isotopes to Determine the Onset of Hydrocarbon Migration. Nuclear Instruments and Methods in Physics Research B 123: 356-360
  • Lu Z., Hummel S.T., Lautz L.K., Hoke G.D., Zhou X., Leone J., Siegel D.I., 2015. Iodine as A Sensitive Tracer for Detecting Influence of Organic-Rich Shale in Shallow Groundwater. Applied Geochemistry, 60: 29-36
  • Mani D., Kumar T.S., Rasheed M.A., Patil D.J., Dayal A.M., Rao T.G., Balaram V., 2011. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting. Natural Resources Research, 20(1): 75-88
  • Martin J.B., Gieskes J.M., Torres M., Kastner M., 1993. Bromine and Iodine in Peru Margin Sediments and Pore Fluids: Implications for Fluid Origins. Geochimico et Cosmochimica Acta, 51: 4377-4389
  • Mazzini M., Svensen H., Planke S., Guliyev I., Akhmanov G.G., Fallik T., Banks D., 2009. When Mud Volcanoes Sleep: Insight from Seep Geochemistry at the Dashgil Mud Volcano, Azerbaijan. Marine and Petroleum Geology, 26: 1704-1715
  • Means J.L., Hubbard N.J., 1987. Short-Chain Aliphatic Acid Anions in Deep Subsurface Brines: A Review of Their Origin, Occurrence, Properties, and Importance and New Data on Their Distribution and Geochemical Implications in the Palo Duro Basin, Texas. Org. Geochem. 11(3): 177-191
  • Moran J.E., Fehn U., Hanor J.S., 1995. Determination of Source Ages and Migration of Brines from the U.S. Gulf Coast Basin Using 129I. Geochim. Cosmochim. Acta 59, 5055-5069
  • Moran, J.E., Fehn, U., Ray, T.D., 1998. Variations in 129I/127I in Recent Marine Sediments: Evidence for A Fossil Organic Component. Chem. Geol., 152: 193-203
  • Muramatsu Y., Wedepohl K.H., 1998. The Distribution of Iodine in the Earth’s Crust. Chemical Geology, 147: 201-216
  • Muramatsu Y., Yoshida S., Fehn U., Amachi S., Ohmomo Y., 2004. Studies with Natural and Anthropogenic Iodine Isotopes: Iodine Distribution and Cycling in the Global Environment. Journal of Environmental Radioactivity, 74: 221-232
  • Muramatsu Y., Doi T., Tomaru H., Fehn U., Takeuchi R., Matsumoto R., 2007. Halogen Concentrations in Pore Waters and Sediments of the Nankai Trough, Japan: Implications for The Origin of Gas Hydrates. Appl. Geochem., 22: 534-556
  • Novikov D.A., 2012. Hydrogeology of Oil-And-Gas Bearing Deposits of the Severnyi Arch (Northern Areas of the West Siberian Megabasin (WSMB). Oil and Gas Business, 4: 521-535
  • Novikov D.A., 2013a. Hydrogeochemical Features of Petroleum-Bearing Deposits of the Yamal Peninsula. Oil and Gas Business, 1: 114-143
  • Novikov D.A., 2013b. Hydrogeology of the Western Part of the Yenisei-Khatanga Regional Trough. Neftegazovaya Geologiya, Teoriya I Praktika, 8(1), www.ngtp.ru/rub/4/2_2013.eng.pdf
  • Okandan E., Mehmetoğlu T., Doyuran V., Demiral B., Parlaktuna M., Gümrah F., Kuru E., Behlülgil K., Karacan Ö., Karaaslan U., 1994. Petrol Arama ve Üretim Faaliyetlerinin Çevre Üzerindeki Etkisi, Proje No.YBAG-0057, 92 s. (Yayımlanmamış)
  • Oppo D., Capozzi R., Nigarov A., Esenov P., 2014. Mud Volcanism and Fluid Geochemistry in the Cheleken Peninsula, Western Turkmenistan. Marine and Petroleum Geology, 57: 122-134
  • Oppo D., Capozzi R., 2015. Spatial Association of Mud Volcano and Sandstone Intrusions, Boyadag Anticline, Western Turkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136
  • Osborn S.G., Mcintosh J.C., Hanor J.S., Biddulph D., 2012. Iodine-129, 87Sr/86Sr, and Trace Elemental Geochemistry of Northern Appalachian Basin Brines: Evidence for Basinal-Scale Fluid Migration and Clay Mineral Diagenesis. American Journal of Science, 312: 263-287
  • Özdemir A., 2009. İyot Üretimi Amaçlı Yapılan Sondaj Çalışmaları. Madencilik Türkiye Dergisi, 1: 26-28
  • Özdemir A., 2018a. Güneydoğu Anadolu Havzasında Petrol ile İyot İlişkisi. MTA Dergisi http://dx.doi.org/10.19076/mta.464160
  • Özdemir A., 2018b. Suda TPH (Toplam Petrol Hidrokarbonları) Analizinin Petrol ve Doğalgaz Arama Amaçlı Kullanımı: Türkiye’den İlk Önemli Sonuçlar. Mühendislik Bilimleri ve Tasarım Dergisi (baskıda)
  • Özdemir A., 2018c. Relationships of Formation, Migration and Trapping between Petroleum and Iodine. Natural and Engineering Sciences (baskıda)
  • Özdemir A., 2018d. Türkiye’nin İyotça Zengin Suları ve Petrol ve Doğalgaz Potansiyeli. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi (baskıda)
  • Özdemir A., 2018e. Hasanoğlan (Ankara) Petrol Sisteminin Organik Hidrojeokimyasal Kanıtları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, doi: 10.5505/pajes.2018.12316
  • Özdemir A., Turgay S.O., Şahinoğlu A., 2018. High Accuracy Estimation with Computer-Aided Hydrogeochemical Methods of Oil and Gas Deposits in Wildcat Sedimentary Basins. Journal of Applied Geology and Geophysics, 6(4): 62-104
  • Parker K.M., Zeng T., Harkness J., Vengosh A., Mitch, V.A., 2014. Enhanced Formation of Disinfection by Products in Shale Gas Wastewater-Impacted Drinking Water Supplies. Environ. Sci. Technol., 48: 11161-11169
  • Planke S., Svensen H., Hovland M., Banks D.A., Jamtveit, B., 2003. Mud and Fluid Migration in Active Mud Volcanoes in Azerbaijan. Geo-Mar. Lett. 23: 258-268
  • Potter II, R.W., Harrington P.A., Silliman A.H., Viellenave J.H., 1996. Significance of Geochemical Anomalies in Hydrocarbon Exploration. in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66: 431-439
  • Price N.B., Calvert S.E., 1977. The Contrasting Geochemical Behaviors of Iodine and Bromine in Recent Sediments from the Namibian Shelf. Geochimica et Cosmochimica Acta 41: 1769-1775
  • Qiao X., Zhang Z., Yu J., Ye X., 2008. Performance Characteristics of a Hybrid Membrane Pilot-Scale Plant for Oilfield-Produced Wastewater. Desalination, 225(1-3): 113-122
  • Reich M., Snyder G.T., Álvarez F., Pérez A., Palacios C., Vargas G., Cameron E.M., Muramatsu Y., Fehn U., 2013. Using Iodine Isotopes to Constrain Supergene Fluid Sources in Arid Regions: Insights from the Chuquicamata Oxide Blanket. Economic Geology, 108: 163-171
  • Reichter B.C., Kreitler C.W., 1993. Geochemical Techniques for Identifying Sources of Groundwater Salinitization. CRC Press, 272 p.
  • Rogers S.G., 1917. Chemical Relations of the Oil-Field Waters in San Joaquin Valley, California. United States Geological Survey. 119 p.
  • Sakroon S.A., 2008. Effect of Oilfield Brine on Groundwater Quality in Marmul Area, Sultanate of Oman. United Arab Emirates University, MSc. Thesis, 146 p.
  • Schoeneich K., 1971. Indices of Oil Bearing Deposits as Based on the Formation Waters of Poland. Nafta (Pol.), 27: 154-157 (in Coustau H., 1977. Formation waters and hydrodynamics. Journal of Geochemical Exploration, 7: 213-241)
  • Senger K., Millett J., Planke S., Ogata K., Eide C.H., Festøy M., Galland O., Jerram D.A., 2017. Effects of Igneous Intrusions on the Petroleum System: A Review. First Break, 35: 1-10
  • Shi P., Fu B., Ninomiya Y., Sun J., Li Y., 2012. Multispectral Remote Sensing Mapping for Hydrocarbon Seepage-Induced Lithologic Anomalies in the Kuqa Foreland Basin, South Tian Shan. Journal of Asian Earth Sciences, 46: 70-77
  • Singh R.R., Saxena J.G., Sahota S.K., Chandra K., 1987. On the Use of Iodine as an Indicator of Petroleum in Indian Basins, 1st India Oil and Natural Gas Comm. Petroleum Geochemistry and Exploration in the Afro-Asian Region International Conference Proceedings, pp. 105-107
  • Stueber A.M., Walter L.M., Huston T.J., Pushkar P., 1993. Formation Waters from Mississippian-Pennsylvanian Reservoirs, Illinois Basin, USA: Chemical and Isotopic Constraints on Evolution and migration. Geochimica et Cosmochimica Acta. 57, 163-784
  • Snyder, G.T., Fehn, U., 2002. Origin of Iodine in Volcanic Fluids: 129I Results from The Central American Volcanic Arc. Geochimica et Cosmochimica Acta, 66(21): 3827-3838
  • Snyder G.T., Fabryka-Martin J.T., 2007. 129I and 36Cl in Dilute Hydrocarbon Waters: Marine-Cosmogenic, In Situ, and Anthropogenic Sources. In: G.T. Snyder & J.E. Moran (Eds.), special issue: The halogens and their isotopes in marine and terrestrial aqueous systems, Applied Geochemistry, 22: 692-704
  • Tedesco S.A., 1995. Surface Geochemistry in Petroleum Exploration. Springer-Science+Business Media, BV., p. 206.
  • Tedesco S.A., Goudge C., Fausnaugh J., Alexon S., 1987. Iodine-An Exploration Tool for Oil and Gas. Oil & Gas Journal, 85(26): 74-77
  • Tedesco S., Goudge C., 1989. Application of Iodine Surface Geochemistry in the Denver-Julesburg Basin. Association of Petroleum Geochemical Explorationists Bulletin, 5(I): 49-72
  • Tellam J.H., 1995. Hydrochemistry of the Saline Groundwaters of the Lower Mersey Basin Permo-Triassic Sandstone Aquifer, UK. Journal of Hydrology, 165: 45-84
  • Togo Y.S., Takahashi Y., Amano Y., Matsuzaki H., Suzuki Y., Terada Y., Muramatsu Y., Ito, K., Iwatsuki T., 2016. Age and Speciation of Iodine in Groundwater and Mudstones of the Horonobe Area, Hokkaido, Japan: Implications for the Origin and Migration of Iodine During Basin Evolution. Geochimica et Cosmochimica Acta. http://dx.doi.org/10.1016/j.gca.2016.07.012
  • Togo Y.S., Kazahaya K., Tosaki Y., Morikawa N., Matsuzaki H., Takahashi M., Sato T., 2014. Groundwater, Possibly Originated from Subducted Sediments, in Joban and Hamadori Areas, Southern Tohoku, Japan. Earth, Planets and Space, 66, 131
  • Tomaru H., Lu Z., Fehn U., Muramatsu Y., 2009a. Origin of Hydrocarbons in the Green Tuff Region of Japan: 129I Results from Oil Field Brines and Hot Springs in the Akita and Niigata Basins. Chemical Geology, 264: 221-231
  • Tomaru H., Fehn U., Lu Z., Takeuchi R., Inagaki F., Imachi H., Kotani R., Matsumoto R., Aoike K., 2009b. Dating of Dissolved Iodine in Pore Waters from the Gas Hydrate Occurrence Offshore Shimokita Peninsula, Japan: 129I Results from The D/V Chikyu Shakedown Cruise. Resource Geology, 59(4): 359-373
  • Tsunogai S., 1971. Iodine in the Deep Water of the Ocean. Deep Sea Research and Oceanographic Abstracts, 18: 913-919
  • Tullai S., Tubbs L. E., Fehn U., 1987. Iodine Extraction from Petroleum for Analysis of 129I/I Ratios by AMS. Nucl. Instrum. Methods Phys. Res. B, 29: 383-386
  • Urazov G.G., 1919. Baku Iodine Lakes. Materials for the Study of Russian Natural Manufacturing Forces. Petrograd.
  • UNDP, 2007. Groundwater Resources of the Kura-Aras River Basin. 30 p. http://aoa.pbe.eea.europa.eu/tools/virtual_library/bibliography-details-each-assessment/answer_4398130913/w_assessment-upload/index_html?as_attachment:int=1
  • UNESCO, 2004 (Zektser, I.S. and Everett, L.G., eds.). Groundwater Resources of the World and Their Use. 346 p.
  • USGS, 2007. Assessment of Undiscovered Natural Gas Resources of the Sacramento Basin Province of California. Fact Sheet 2007-3014
  • U.S. 2017. Geological Survey National Produced Waters Geochemical Database v2.2. https://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters.aspx Veil J.A., 2006. Comparison of Two International Approaches to Controlling Risk from Produced Water Discharges. Paper presented at the 70th PERF meeting, Paris, France
  • Warren J.K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin Heidelberg. 1035 p.
  • White D.E., 1957. Thermal Waters of Volcanic Origin. Bulletin of the Geological Society of America, 68: 1637-1668
  • Whittemore D.O., Basel C.L., Galle O.K., Waugh T.C., 1981. Geochemical Identification of Saltwater Sources in the Smoky Hill River Valley, Mcpherson, Saline, and Dickson Countries, Kansas. Kansas Geological Survey, Open-file Report 81-6, p. 78
  • Wilke-Dörfurt E., 1927. Über den Jodgehalt einiger Gesteine und seine Beziehungen zum chemischen Teil des Kropfproblems. Ann. Chem., 453: 288 (in Correns, C.W., 1956. The Geochemistry of the Halogens. Physics and Chemistry of the Earth, 1: 181-233)
  • Worden R.H., 1996. Controls on Halogen Concentrations in Sedimentary Formation Waters. Mineralogical Magazine, 60: 259-274
  • Xun Z., Cijun L., Xiumin J., Qiang D., Lihomg T., 1997. Origin of Subsurface Brines in the Sichuan Basin. Groundwater, 35(1): 53-58
  • Yang S. 2017. Fundamentals of Petrophysics. Springer-Verlag GmbH, 502 p.
  • Zonn I.S., Kostianoy A.G., Kosarev A.N., Glantz M.H., 2010. The Caspian Sea Encyclopedia. Springer-Verlag Berlin Heidelberg. 525 p.
There are 128 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Derleme Makale
Authors

Adil Özdemir 0000-0002-3975-2846

Publication Date December 17, 2018
Acceptance Date November 7, 2018
Published in Issue Year 2018 Volume: 4 Issue: 2

Cite

APA Özdemir, A. (2018). İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(2), 149-185. https://doi.org/10.28979/comufbed.440738
AMA Özdemir A. İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. December 2018;4(2):149-185. doi:10.28979/comufbed.440738
Chicago Özdemir, Adil. “İyotça Zengin Yüzey Ve Yeraltı Sularının Oluşum Mekanizmaları Ve Petrol Ve Doğalgaz Yatakları Ile İlişkileri”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4, no. 2 (December 2018): 149-85. https://doi.org/10.28979/comufbed.440738.
EndNote Özdemir A (December 1, 2018) İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 2 149–185.
IEEE A. Özdemir, “İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 2, pp. 149–185, 2018, doi: 10.28979/comufbed.440738.
ISNAD Özdemir, Adil. “İyotça Zengin Yüzey Ve Yeraltı Sularının Oluşum Mekanizmaları Ve Petrol Ve Doğalgaz Yatakları Ile İlişkileri”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4/2 (December 2018), 149-185. https://doi.org/10.28979/comufbed.440738.
JAMA Özdemir A. İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;4:149–185.
MLA Özdemir, Adil. “İyotça Zengin Yüzey Ve Yeraltı Sularının Oluşum Mekanizmaları Ve Petrol Ve Doğalgaz Yatakları Ile İlişkileri”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 2, 2018, pp. 149-85, doi:10.28979/comufbed.440738.
Vancouver Özdemir A. İyotça Zengin Yüzey ve Yeraltı Sularının Oluşum Mekanizmaları ve Petrol ve Doğalgaz Yatakları ile İlişkileri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2018;4(2):149-85.

 14421         download