Research Article
BibTex RIS Cite

Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications

Year 2019, Volume: 5 Issue: 2, 201 - 213, 19.12.2019
https://doi.org/10.28979/comufbed.592527

Abstract

A stainless steel mesh current collector was coated by one-step
electrochemical method for supercapacitor applications. As stainless steel mesh
has a high surface area, accessibility of ions may be achieved easier than bulk
stainless steel. Thin nickel films were synthesized in an aqueous solution
electrolyte medium by a three-electrodes electrochemical configuration system
under room temperature conditions by applying the potential of -1.5 V for 150,
300 and 600 seconds. The electrochemical capacitive characterization of the
prepared nickel films was investigated in 1 M KOH electrolyte solution. The surface
morphology of the prepared electrodes was examined. Microstructures of nickel
coatings obtained on stainless steel wire surface were similar to tree peels.
Therefore, electrodes with high surface area were obtained in the
electrodeposition of nickel from pyrophosphate medium. The ion and electron
transfer rates between the nickel-coated stainless steel mesh and the alkaline
electrolyte were increased. Nickel coated steel mesh having a redox reaction at
positive potential between +0.2 V and +0.6 V could be used as cathode
electrodes. The nickel/stainless steel mesh electrode has a specific capacity
of 1090 F g-1 at the scan rate of 5 mV s-1. As the
electroactivity of stainless steel in KOH electrolyte was increased with nickel
film, nickel-based coatings on stainless steel mesh surface in aqueous solution
can be used as cathode electrodes in supercapacitor applications.

References

  • Arico A. S., Bruce P., Scrosati B., Tarascon J. M., Van Schalkwijk W., 2011. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 148–59.
  • Carmezim M. J., Catarina F.S., 2017. Metal Oxides in Supercapacitors Electrolytes in Metal Oxide Supercapacitors. Elsevier.
  • Conway B. E., Birss V., Wojtowicz, J., 1997. The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. Journal of Power Sources 66(1–2): 1–14.
  • Dubal D. P., Gund G. S., Lokhande C. D., Holze R., 2013. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Materials Research Bulletin 48(2): 923–28.
  • GambyJ., Taberna P. L., Simon P., Fauvarque J. F., Chesneau M., 2001. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. Journal of Power Sources 101(1): 109–16.
  • Godillot G., Guerlou-Demourgues L., Taberna P. L., Simon P., Delmas C., 2011. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors. Electrochemical and Solid-State Letters 14(10): A139.
  • Hu L., Choi J. W., Yang Y., Jeong S., La Mantia F., Cui L. F., Cui Y., 2009. Highly Conductive Paper for Energy-Storage Devices. Proceedings of the National Academy of Sciences 106(51): 21490–94.
  • Jiang H., Ma J., Li C., 2012. Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Advanced Materials 24(30): 4197–4202.
  • Khaligh A., Li Z., 2010. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art. IEEE transactions on Vehicular Technology 59(6): 2806–14.
  • Kulkarni S. B., Patil U. M., Shackery I., Sohn, J. S., Lee, S., Park, B., Jun, S., 2014. High-Performance Supercapacitor Electrode Based on a Polyaniline Nanofibers/3D Graphene Framework as an Efficient Charge Transporter. Journal of Materials Chemistry A 2(14): 4989–98.
  • Li Z., Wang J., Liu X., Liu S., Ou J., Yang S., 2011. Electrostatic Layer-by-Layer Self-Assembly Multilayer Films Based on Graphene and Manganese Dioxide Sheets as Novel Electrode Materials for Supercapacitors. Journal of Materials Chemistry 21(10): 3397–3403.
  • Safizadeh F., Ghali E., Houlachi G., 2015. Electrocatalysis Developments for Hydrogen Evolution Reaction in Alkaline Solutions–a Review. International journal of hydrogen energy 40(1): 256–74.
  • Shi M., Kou S., Yan X., 2014. Engineering the Electrochemical Capacitive Properties of Graphene Sheets in Ionic‐Liquid Electrolytes by Correct Selection of Anions. ChemSusChem 7(11): 3053–62.
  • Simon P., Gogotsi Y., 2010. Materials for Electrochemical Capacitors. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific, 320–29.
  • Stoller M. D., Ruoff R. S., 2010. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy & Environmental Science 3(9): 1294–1301.
  • Vadiyar M. M., Bhise S. C., Kolekar S. S., Chang, J. Y., Ghule, K. S., Ghule, A. V., 2016. Low Cost Flexible 3-D Aligned and Cross-Linked Efficient ZnFe2O4 Nano-Flakes Electrode on Stainless Steel Mesh for Asymmetric Supercapacitors. Journal of Materials Chemistry A 4(9): 3504–12.
  • Wang K., Wu H., Meng Y., Wei Z., 2014. Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 10(1): 14–31.
  • Wang R., Xu C., Lee J. M., 2016. High Performance Asymmetric Supercapacitors: New NiOOH Nanosheet/Graphene Hydrogels and Pure Graphene Hydrogels. Nano Energy 19: 210–21.
  • Jian X., Liu S., Gao Y., Tian W., Jiang Z., Xiao X., Yin L., 2016. Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions. Journal of Electrical Engineering 4(2): 75–87.
  • Yu G., Xie X., Pan L., Bao Z., Cui Y., 2013. Hybrid Nanostructured Materials for High-Performance Electrochemical Capacitors. Nano Energy 2(2): 213–34.

Süperkapasitör Uygulamaları için Paslanmaz Çelik Örgü Üzerine Nikel Kaplama Üretimi

Year 2019, Volume: 5 Issue: 2, 201 - 213, 19.12.2019
https://doi.org/10.28979/comufbed.592527

Abstract

Süperkapasitör uygulamaları için tek adımda
paslanmaz çelik örgü akım toplayıcısı elektrokimyasal yöntemle kaplandı.
Paslanmaz çelik ağı yüksek yüzey alanına sahip olduğundan, iyonların
erişilebilirliği dökme paslanmaz çelikten daha kolaydır. İnce nikel filmler,
sulu çözelti elektrolit ortamında, oda sıcaklığı koşulları altında, 150, 300 ve
600 saniye boyunca -1.5 V potansiyelinin uygulanmasıyla üç elektrotlu bir
elektrokimyasal konfigürasyon sistemi ile sentezlendi. Hazırlanan nikel
filmlerin elektrokimyasal kapasitif özellikleri 1 M KOH elektrolit çözeltisinde
incelendi. Paslanmaz çelik örgü yüzeyinde elde edilen nikel kaplamaların mikro
yapıları ağaç kabuklarına benzemektedir. Bu yüzden, yüksek yüzey alanına sahip
elektrotlar, pirofosfat ortamından nikelin elektrodepolanması ile elde edildi.
Nikel kaplı paslanmaz çelik örgü ve bazik elektrolit arasındaki iyon ve
elektron transfer hızları arttırıldı. +0.2 V ve +0.6 V arasındaki pozitif
potansiyelde redoks reaksiyonuna sahip nikel kaplı çelik örgü, katot elektrot
olarak kullanılabilir. Nikel/paslanmaz çelik örgü elektrot, 5 mV s-1
tarama hızında 1090 F g-1 spesifik kapasitansa sahiptir. Paslanmaz
çeliğin KOH elektrolitinde elektroaktivitesi nikel filmle karıştırıldığında,
sulu çözelti içindeki paslanmaz çelik ağ yüzeyindeki nikel temelli kaplamalar,
süperkapasitör uygulamalarında katot elektrodu olarak kullanılabilir.

References

  • Arico A. S., Bruce P., Scrosati B., Tarascon J. M., Van Schalkwijk W., 2011. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 148–59.
  • Carmezim M. J., Catarina F.S., 2017. Metal Oxides in Supercapacitors Electrolytes in Metal Oxide Supercapacitors. Elsevier.
  • Conway B. E., Birss V., Wojtowicz, J., 1997. The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. Journal of Power Sources 66(1–2): 1–14.
  • Dubal D. P., Gund G. S., Lokhande C. D., Holze R., 2013. CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition. Materials Research Bulletin 48(2): 923–28.
  • GambyJ., Taberna P. L., Simon P., Fauvarque J. F., Chesneau M., 2001. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. Journal of Power Sources 101(1): 109–16.
  • Godillot G., Guerlou-Demourgues L., Taberna P. L., Simon P., Delmas C., 2011. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors. Electrochemical and Solid-State Letters 14(10): A139.
  • Hu L., Choi J. W., Yang Y., Jeong S., La Mantia F., Cui L. F., Cui Y., 2009. Highly Conductive Paper for Energy-Storage Devices. Proceedings of the National Academy of Sciences 106(51): 21490–94.
  • Jiang H., Ma J., Li C., 2012. Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Advanced Materials 24(30): 4197–4202.
  • Khaligh A., Li Z., 2010. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art. IEEE transactions on Vehicular Technology 59(6): 2806–14.
  • Kulkarni S. B., Patil U. M., Shackery I., Sohn, J. S., Lee, S., Park, B., Jun, S., 2014. High-Performance Supercapacitor Electrode Based on a Polyaniline Nanofibers/3D Graphene Framework as an Efficient Charge Transporter. Journal of Materials Chemistry A 2(14): 4989–98.
  • Li Z., Wang J., Liu X., Liu S., Ou J., Yang S., 2011. Electrostatic Layer-by-Layer Self-Assembly Multilayer Films Based on Graphene and Manganese Dioxide Sheets as Novel Electrode Materials for Supercapacitors. Journal of Materials Chemistry 21(10): 3397–3403.
  • Safizadeh F., Ghali E., Houlachi G., 2015. Electrocatalysis Developments for Hydrogen Evolution Reaction in Alkaline Solutions–a Review. International journal of hydrogen energy 40(1): 256–74.
  • Shi M., Kou S., Yan X., 2014. Engineering the Electrochemical Capacitive Properties of Graphene Sheets in Ionic‐Liquid Electrolytes by Correct Selection of Anions. ChemSusChem 7(11): 3053–62.
  • Simon P., Gogotsi Y., 2010. Materials for Electrochemical Capacitors. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific, 320–29.
  • Stoller M. D., Ruoff R. S., 2010. Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy & Environmental Science 3(9): 1294–1301.
  • Vadiyar M. M., Bhise S. C., Kolekar S. S., Chang, J. Y., Ghule, K. S., Ghule, A. V., 2016. Low Cost Flexible 3-D Aligned and Cross-Linked Efficient ZnFe2O4 Nano-Flakes Electrode on Stainless Steel Mesh for Asymmetric Supercapacitors. Journal of Materials Chemistry A 4(9): 3504–12.
  • Wang K., Wu H., Meng Y., Wei Z., 2014. Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 10(1): 14–31.
  • Wang R., Xu C., Lee J. M., 2016. High Performance Asymmetric Supercapacitors: New NiOOH Nanosheet/Graphene Hydrogels and Pure Graphene Hydrogels. Nano Energy 19: 210–21.
  • Jian X., Liu S., Gao Y., Tian W., Jiang Z., Xiao X., Yin L., 2016. Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions. Journal of Electrical Engineering 4(2): 75–87.
  • Yu G., Xie X., Pan L., Bao Z., Cui Y., 2013. Hybrid Nanostructured Materials for High-Performance Electrochemical Capacitors. Nano Energy 2(2): 213–34.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Naime Özdemir 0000-0003-4744-1316

Abdulcabbar Yavuz 0000-0002-7216-0586

Perihan Yilmaz Erdogan 0000-0002-1375-603X

Huseyin Zengin 0000-0002-5540-725X

Publication Date December 19, 2019
Acceptance Date November 29, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Özdemir, N., Yavuz, A., Yilmaz Erdogan, P., Zengin, H. (2019). Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 201-213. https://doi.org/10.28979/comufbed.592527
AMA Özdemir N, Yavuz A, Yilmaz Erdogan P, Zengin H. Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. December 2019;5(2):201-213. doi:10.28979/comufbed.592527
Chicago Özdemir, Naime, Abdulcabbar Yavuz, Perihan Yilmaz Erdogan, and Huseyin Zengin. “Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (December 2019): 201-13. https://doi.org/10.28979/comufbed.592527.
EndNote Özdemir N, Yavuz A, Yilmaz Erdogan P, Zengin H (December 1, 2019) Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 201–213.
IEEE N. Özdemir, A. Yavuz, P. Yilmaz Erdogan, and H. Zengin, “Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, pp. 201–213, 2019, doi: 10.28979/comufbed.592527.
ISNAD Özdemir, Naime et al. “Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (December 2019), 201-213. https://doi.org/10.28979/comufbed.592527.
JAMA Özdemir N, Yavuz A, Yilmaz Erdogan P, Zengin H. Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019;5:201–213.
MLA Özdemir, Naime et al. “Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2019, pp. 201-13, doi:10.28979/comufbed.592527.
Vancouver Özdemir N, Yavuz A, Yilmaz Erdogan P, Zengin H. Fabrication of Nickel Coating on a Stainless Steel Mesh for Supercapacitor Applications. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019;5(2):201-13.

 14421         download