The purpose of the this study is to introduce the sequence space $$ \ell_{p}(E,B(r,s))=\bigg\{x=(x_{n})\in \omega: \sum_{n=1}^{\infty} \bigg|\sum_{j\in E_n}rx_{j}+\sum_{j\in E_{n+1}}sx_{j}\bigg|^{p}<\infty\bigg\}, $$ where $E=(E_n)$ is a partition of finite subsets of the positive integers, $r,s\in \mathbb{R}\backslash \{0\}$ and $p\geq 1$. The topological and algebraical properties of this space are examined. Furthermore, we establish some inclusion relations. Finally, the problem of finding the norm of certain matrix operators such as Copson and Hilbert from $\ell_p$ into $\ell_{p}(E,B(r,s)) $ is investigated.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | December 14, 2018 |
Acceptance Date | November 19, 2018 |
Published in Issue | Year 2018 Volume: 1 Issue: 1 |