Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 44 - 50, 30.10.2019

Abstract

References

  • [1] D .L. Russel, On exponential bases for the Sobolev spaces over an interval ,J. Math. Anal. Appl., 87(2) (1982), 528-550.
  • [2] Z. G. Huseynov, A.M. Shykhammedov, On bases of sines and cosines in Sobolev spaces, Appl. Math. Lett., 25(3) (2012), 275-278.
  • [3] B. T. Bilalov, T. B. Gasymov, On basicity of a part of a system with infinite defect, Trans. NAS Azerb.,28(7) (2007), 53-59.
  • [4] T. B. Gasymov, On necessary and sufficient conditions of basicity of some defective systems in Banach space, Trans. NAS Azerb., 26(1)(2006), 65-70.
  • [5] B. T. Bilalov, Bases of exponentials, sines, and cosines, Differ. Uravn., 39(5)(2003), 619-622.
  • [6] B. T. Bilalov, T.R. Muradov, Defect bases of Banach spaces, Proc. IMM NASA., 22(30) (2005), 23-26.
  • [7] X. He, H. Volkmer, Riesz bases of solutions of Sturm–Liouville equations, J. Fourier Anal. Appl., 7(3) (2001), 297-307.
  • [8] A. A. Huseynli, On the stability of basisness in Lp(1 < p < 1of cosines and sines, Turk. J. Math., 35(1) (2011), 47-54.
  • [9] A. N. Tichonoff, A. A. Samarskii , Equations of mathematical physics, M. 1977. 736 p. (Russian).
  • [10] F.V. Atkinson, Discrete and Continuous Boundary Problems, Moscow, Mir (1968).
  • [11] A.N. Tikhonov, Samarskii, A.A., Equations of Mathematical Physics, Mosk. Gos. Univ., Moscow (1999); Dover, New York (2011).
  • [12] T. Iwaniec, C. Sbordone, On the integrability of the Jacobian under minimal hypothesis, Arch. Ration. Mech. Anal., 119 (1992), 129–143.
  • [13] L. Boccardo, Quelques problemes de Dirichlet avec donnees dans de grands espaces de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., 325(1997), 1269–1272.
  • [14] C. Capone, A. Fiorenza, G. E. Karadzhov, Grand Orlicz spaces and global integrability of the Jacobian, Math. Scand., 102 (2008), 131–148.
  • [15] N. Fusco, P. L. Lions, C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124(2) (1996), 561 – 565.
  • [16] L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math., 92(2)(1997), 249 – 258.
  • [17] T. Iwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: Monotonicity and Continuity, Invent. Math., 144 (2001), 507 – 531.
  • [18] C. Sbordone, Grand Sobolev spaces and their applications to variational problems, Le Matematiche, 2(51) (1996), 335 – 347.
  • [19] B. Stroffolini, A stability result for p-harmonic systems with discontinuous coefficients, Electronic Journal of Diff. Equations, 2 (2001), 1 – 7.
  • [20] A. Fiorenza, B. Gupta, P. Jain, Themaximal theorem for weighted grand Lebesgue spaces, Studia Math., 188(2) (2008), 123–133.
  • [21] V. Kokilashvili, A. Meskhi, Trace inequalities for integral operators with fractional order in grand Lebesgue spaces, Studia Math., 210 (2012), 159–176.
  • [22] A. Fiorenza, G. E. Karadzhov, Grand and small Lebesgue spaces and their analogues, Z. Anal. Anwen., , 23(4) (2004), 657–681.
  • [23] A. Fiorenza, A. Mercaldo, J.M. Rakotoson, Regularity and comparison result in grand Sobolev spaces for parabolic equations with measure data, Appl. Math. Lett., 14(8) (2001), 979–981.
  • [24] A. Fiorenza, A. Mercaldo, J. M. Rakotoson, Regularity and uniqueness results in grand Sabolev spaces for parabolic equations with measure data, Discrete Contin. Dyn. Syst., 8(4) (2003), 893–906.
  • [25] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51(2) (2000), 131–148.
  • [26] A. Fiorenza, B. Gupta, P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188(2) (2008), 123–133.
  • [27] A. Fiorenza, j. M. Rakotoson, On small Lebesgue spaces and their applications, Comptes Rendus Math., 334(1) (2002), 23–26.
  • [28] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Nonstandard Function Spaces: Variable Exponent Lebesgue and Amalgam Spaces, vol. 1. Springer, Heidelberg, 2016.
  • [29] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Nonstandard Function Spaces: Variable Exponent H´’older, Morrey–Campanato and Grand Spaces, vol. 2. Springer, Heidelberg, 2016.
  • [30] R. E. Castillo, H. Rafeiro, An introductory course in Lebesgue spaces, Springer, Switzerland, 2016.
  • [31] B. T. Bilalov, T. B. Gasymov, On basicity of eigenfunctions of second-order discontinuous differential operator, Ufa Mathematical J., (2017), 9.1.
  • [32] B. Muckenhoupt, B., Hardy’s Inequality with Weights, Studia Math., 44 (1972), 31–38.
  • [33] Gasymov, B. Telman, J. M. Shakhrizad, On the convergence of spectral expansions for one discontinuous problem with spectral parameter in the boundary condition, Trans. NAS Azerb., 26(4) (2006), 103-116.
  • [34] V. Kokilashvili, M. Alexander, A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Mathematical J., 16(3) (2009), 547-551. 50

On Spectral Properties of Discontinuous Differential Operator with Second Order

Year 2019, Volume: 2 Issue: 1, 44 - 50, 30.10.2019

Abstract

In this work, we consider the spectral problem for a second-order discontinuous differential operator with a spectral parameter in the boundary condition in $L_p,  1<p<\infty$. We study a method for establishing the basicity of eigenfunctions for such a problem.  Such spectral problems arise while one solves the problem of a loaded string fixed at both ends with a load placed in the between ends of the string by the Fourier method.

References

  • [1] D .L. Russel, On exponential bases for the Sobolev spaces over an interval ,J. Math. Anal. Appl., 87(2) (1982), 528-550.
  • [2] Z. G. Huseynov, A.M. Shykhammedov, On bases of sines and cosines in Sobolev spaces, Appl. Math. Lett., 25(3) (2012), 275-278.
  • [3] B. T. Bilalov, T. B. Gasymov, On basicity of a part of a system with infinite defect, Trans. NAS Azerb.,28(7) (2007), 53-59.
  • [4] T. B. Gasymov, On necessary and sufficient conditions of basicity of some defective systems in Banach space, Trans. NAS Azerb., 26(1)(2006), 65-70.
  • [5] B. T. Bilalov, Bases of exponentials, sines, and cosines, Differ. Uravn., 39(5)(2003), 619-622.
  • [6] B. T. Bilalov, T.R. Muradov, Defect bases of Banach spaces, Proc. IMM NASA., 22(30) (2005), 23-26.
  • [7] X. He, H. Volkmer, Riesz bases of solutions of Sturm–Liouville equations, J. Fourier Anal. Appl., 7(3) (2001), 297-307.
  • [8] A. A. Huseynli, On the stability of basisness in Lp(1 < p < 1of cosines and sines, Turk. J. Math., 35(1) (2011), 47-54.
  • [9] A. N. Tichonoff, A. A. Samarskii , Equations of mathematical physics, M. 1977. 736 p. (Russian).
  • [10] F.V. Atkinson, Discrete and Continuous Boundary Problems, Moscow, Mir (1968).
  • [11] A.N. Tikhonov, Samarskii, A.A., Equations of Mathematical Physics, Mosk. Gos. Univ., Moscow (1999); Dover, New York (2011).
  • [12] T. Iwaniec, C. Sbordone, On the integrability of the Jacobian under minimal hypothesis, Arch. Ration. Mech. Anal., 119 (1992), 129–143.
  • [13] L. Boccardo, Quelques problemes de Dirichlet avec donnees dans de grands espaces de Sobolev, C. R. Acad. Sci. Paris Sér. I Math., 325(1997), 1269–1272.
  • [14] C. Capone, A. Fiorenza, G. E. Karadzhov, Grand Orlicz spaces and global integrability of the Jacobian, Math. Scand., 102 (2008), 131–148.
  • [15] N. Fusco, P. L. Lions, C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124(2) (1996), 561 – 565.
  • [16] L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math., 92(2)(1997), 249 – 258.
  • [17] T. Iwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: Monotonicity and Continuity, Invent. Math., 144 (2001), 507 – 531.
  • [18] C. Sbordone, Grand Sobolev spaces and their applications to variational problems, Le Matematiche, 2(51) (1996), 335 – 347.
  • [19] B. Stroffolini, A stability result for p-harmonic systems with discontinuous coefficients, Electronic Journal of Diff. Equations, 2 (2001), 1 – 7.
  • [20] A. Fiorenza, B. Gupta, P. Jain, Themaximal theorem for weighted grand Lebesgue spaces, Studia Math., 188(2) (2008), 123–133.
  • [21] V. Kokilashvili, A. Meskhi, Trace inequalities for integral operators with fractional order in grand Lebesgue spaces, Studia Math., 210 (2012), 159–176.
  • [22] A. Fiorenza, G. E. Karadzhov, Grand and small Lebesgue spaces and their analogues, Z. Anal. Anwen., , 23(4) (2004), 657–681.
  • [23] A. Fiorenza, A. Mercaldo, J.M. Rakotoson, Regularity and comparison result in grand Sobolev spaces for parabolic equations with measure data, Appl. Math. Lett., 14(8) (2001), 979–981.
  • [24] A. Fiorenza, A. Mercaldo, J. M. Rakotoson, Regularity and uniqueness results in grand Sabolev spaces for parabolic equations with measure data, Discrete Contin. Dyn. Syst., 8(4) (2003), 893–906.
  • [25] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 51(2) (2000), 131–148.
  • [26] A. Fiorenza, B. Gupta, P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math., 188(2) (2008), 123–133.
  • [27] A. Fiorenza, j. M. Rakotoson, On small Lebesgue spaces and their applications, Comptes Rendus Math., 334(1) (2002), 23–26.
  • [28] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Nonstandard Function Spaces: Variable Exponent Lebesgue and Amalgam Spaces, vol. 1. Springer, Heidelberg, 2016.
  • [29] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Nonstandard Function Spaces: Variable Exponent H´’older, Morrey–Campanato and Grand Spaces, vol. 2. Springer, Heidelberg, 2016.
  • [30] R. E. Castillo, H. Rafeiro, An introductory course in Lebesgue spaces, Springer, Switzerland, 2016.
  • [31] B. T. Bilalov, T. B. Gasymov, On basicity of eigenfunctions of second-order discontinuous differential operator, Ufa Mathematical J., (2017), 9.1.
  • [32] B. Muckenhoupt, B., Hardy’s Inequality with Weights, Studia Math., 44 (1972), 31–38.
  • [33] Gasymov, B. Telman, J. M. Shakhrizad, On the convergence of spectral expansions for one discontinuous problem with spectral parameter in the boundary condition, Trans. NAS Azerb., 26(4) (2006), 103-116.
  • [34] V. Kokilashvili, M. Alexander, A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Mathematical J., 16(3) (2009), 547-551. 50
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yusuf Zeren

Fatih Şirin 0000-0002-7144-6945

Publication Date October 30, 2019
Acceptance Date October 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Zeren, Y., & Şirin, F. (2019). On Spectral Properties of Discontinuous Differential Operator with Second Order. Conference Proceedings of Science and Technology, 2(1), 44-50.
AMA Zeren Y, Şirin F. On Spectral Properties of Discontinuous Differential Operator with Second Order. Conference Proceedings of Science and Technology. October 2019;2(1):44-50.
Chicago Zeren, Yusuf, and Fatih Şirin. “On Spectral Properties of Discontinuous Differential Operator With Second Order”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 44-50.
EndNote Zeren Y, Şirin F (October 1, 2019) On Spectral Properties of Discontinuous Differential Operator with Second Order. Conference Proceedings of Science and Technology 2 1 44–50.
IEEE Y. Zeren and F. Şirin, “On Spectral Properties of Discontinuous Differential Operator with Second Order”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 44–50, 2019.
ISNAD Zeren, Yusuf - Şirin, Fatih. “On Spectral Properties of Discontinuous Differential Operator With Second Order”. Conference Proceedings of Science and Technology 2/1 (October 2019), 44-50.
JAMA Zeren Y, Şirin F. On Spectral Properties of Discontinuous Differential Operator with Second Order. Conference Proceedings of Science and Technology. 2019;2:44–50.
MLA Zeren, Yusuf and Fatih Şirin. “On Spectral Properties of Discontinuous Differential Operator With Second Order”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 44-50.
Vancouver Zeren Y, Şirin F. On Spectral Properties of Discontinuous Differential Operator with Second Order. Conference Proceedings of Science and Technology. 2019;2(1):44-50.