Conference Paper
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 64 - 67, 30.10.2019

Abstract

References

  • [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96.
  • [2] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Inf. Comp., 31 (1989), 343–349.
  • [3] T. Bera, N. K. Mahapatra, Neutrosophic soft linear spaces, Fuzzy Information and Engineering, 9 (2017), 299–324.
  • [4] T. Bera, n. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets and System, 23 (2018),52–71.
  • [5] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399.
  • [6] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365–368.
  • [7] M. Ilkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math., 52 (2019), 225–236, Doi: 10.1515/dema-2019-0019.
  • [8] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215–229.
  • [9] M. Kiri¸sci, Integrated and differentiated spaces of triangular fuzzy numbers, Fas. Math. 59 (2017), 75–89. DOI:10.1515/fascmath-2017-0018.
  • [10] M. Kiri¸sci, Multiplicative generalized metric spaces and fixed point theorems, Journal of Mathematical Analysis, 8 (2017), 212–224.
  • [11] M. Kiri¸sci, N. Simsek, Neutrosophic metric spaces, arXiv preprint arXiv:1907.00798.
  • [12] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
  • [13] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535–537.
  • [14] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22 (2004), 1039-1046.
  • [15] J. J. Peng, J. Q. Wang,J. Wang, H. Y. Zhang, X. H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, International Journal of Systems Science, 47 (2016), 2342-2358, Doi: 10.1080/00207721.2014.994050.
  • [16] M. Rafi, S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces, Iranin J. Fuzzy Systems, 3 (2006, 23–29.
  • [17] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287–297.
  • [18] F. A Smarandache, Unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability and statistics, Phoenix: Xiquan, 2003.
  • [19] I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20 (1996), 191–210.
  • [20] H. Wang, F. Smarandache,Y. Q. Zhang,R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 4 (2010), 410–413.
  • [21] R. R. Yager, Pythagorean fuzzy subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual M eeting, Edmonton, Canada, 2013.
  • [22] J. A. Ye, Multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26 (2014), 2459–2466.
  • [23] L. A. Zadeh, Fuzzy sets, Inf. Comp., 8 (1965), 338–353.

Neutrosophic Metric Spaces and Fixed Point Results

Year 2019, Volume: 2 Issue: 1, 64 - 67, 30.10.2019

Abstract

In this paper, we define the neutrosophic contraction mapping and give a fixed point theorem in neutrsophic metric spaces.

References

  • [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96.
  • [2] K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Inf. Comp., 31 (1989), 343–349.
  • [3] T. Bera, N. K. Mahapatra, Neutrosophic soft linear spaces, Fuzzy Information and Engineering, 9 (2017), 299–324.
  • [4] T. Bera, n. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets and System, 23 (2018),52–71.
  • [5] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395–399.
  • [6] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365–368.
  • [7] M. Ilkhan, E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math., 52 (2019), 225–236, Doi: 10.1515/dema-2019-0019.
  • [8] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215–229.
  • [9] M. Kiri¸sci, Integrated and differentiated spaces of triangular fuzzy numbers, Fas. Math. 59 (2017), 75–89. DOI:10.1515/fascmath-2017-0018.
  • [10] M. Kiri¸sci, Multiplicative generalized metric spaces and fixed point theorems, Journal of Mathematical Analysis, 8 (2017), 212–224.
  • [11] M. Kiri¸sci, N. Simsek, Neutrosophic metric spaces, arXiv preprint arXiv:1907.00798.
  • [12] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
  • [13] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535–537.
  • [14] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 22 (2004), 1039-1046.
  • [15] J. J. Peng, J. Q. Wang,J. Wang, H. Y. Zhang, X. H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, International Journal of Systems Science, 47 (2016), 2342-2358, Doi: 10.1080/00207721.2014.994050.
  • [16] M. Rafi, S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces, Iranin J. Fuzzy Systems, 3 (2006, 23–29.
  • [17] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24 (2005), 287–297.
  • [18] F. A Smarandache, Unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability and statistics, Phoenix: Xiquan, 2003.
  • [19] I. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20 (1996), 191–210.
  • [20] H. Wang, F. Smarandache,Y. Q. Zhang,R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 4 (2010), 410–413.
  • [21] R. R. Yager, Pythagorean fuzzy subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual M eeting, Edmonton, Canada, 2013.
  • [22] J. A. Ye, Multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26 (2014), 2459–2466.
  • [23] L. A. Zadeh, Fuzzy sets, Inf. Comp., 8 (1965), 338–353.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Necip Şimşek

Murat Kirisci 0000-0003-4938-5207

Publication Date October 30, 2019
Acceptance Date September 18, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Şimşek, N., & Kirisci, M. (2019). Neutrosophic Metric Spaces and Fixed Point Results. Conference Proceedings of Science and Technology, 2(1), 64-67.
AMA Şimşek N, Kirisci M. Neutrosophic Metric Spaces and Fixed Point Results. Conference Proceedings of Science and Technology. October 2019;2(1):64-67.
Chicago Şimşek, Necip, and Murat Kirisci. “Neutrosophic Metric Spaces and Fixed Point Results”. Conference Proceedings of Science and Technology 2, no. 1 (October 2019): 64-67.
EndNote Şimşek N, Kirisci M (October 1, 2019) Neutrosophic Metric Spaces and Fixed Point Results. Conference Proceedings of Science and Technology 2 1 64–67.
IEEE N. Şimşek and M. Kirisci, “Neutrosophic Metric Spaces and Fixed Point Results”, Conference Proceedings of Science and Technology, vol. 2, no. 1, pp. 64–67, 2019.
ISNAD Şimşek, Necip - Kirisci, Murat. “Neutrosophic Metric Spaces and Fixed Point Results”. Conference Proceedings of Science and Technology 2/1 (October 2019), 64-67.
JAMA Şimşek N, Kirisci M. Neutrosophic Metric Spaces and Fixed Point Results. Conference Proceedings of Science and Technology. 2019;2:64–67.
MLA Şimşek, Necip and Murat Kirisci. “Neutrosophic Metric Spaces and Fixed Point Results”. Conference Proceedings of Science and Technology, vol. 2, no. 1, 2019, pp. 64-67.
Vancouver Şimşek N, Kirisci M. Neutrosophic Metric Spaces and Fixed Point Results. Conference Proceedings of Science and Technology. 2019;2(1):64-7.