On Some Generalized Deferred Cesàro Means-II
Year 2019,
Volume: 2 Issue: 3, 198 - 200, 30.12.2019
Mikail Et
Abstract
In this study, using the generalized difference operator $\Delta^{m}$, we introduce some new sequence spaces and investigate some topological properties of these sequence spaces.
Supporting Institution
FIRAT UNIVERSITY
Project Number
FUBAB FF.19.15
Thanks
This research was supported by Management Union of the Scientific Research Projects of Firat University under the Project Number: FUBAB FF.19.15. We would like to thank Firat University Scientific Research Projects Unit for their support.
References
- [1] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
- [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
- [3] M. Et, F. Nuray, $\Delta^{m}-$statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001), 961–969.
- [4] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932), 413–421.
- [5] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014), 1–11.
- [6] B. Altay, F. Basar, On the fine spectrum of the difference operator $\Delta$ on $c_{0}$ and $c$, Inform. Sci. 168(1-4) (2004), 217–224.
- [7] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
- [8] V. K. Bhardwaj, S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(315) (2013), 9.
- [9] M.Candan, Vector-valued FK-space defined by a modulus function and an infinite matrix: Thai J. of Math 12(1) (2014), 155-165.
- [10] M. Et, On some generalized Cesàro difference sequence spaces, ˙Istanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229.
- [11] M. Et, M. Mursaleen and M. I¸sık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013), 789–796.
- [12] G.Kılınc, M. Candan, Some Generalized Fibonacci Difference Spaces defined by a Sequence of Modulus Functions, Facta Universitatis, Series: Mathematics and Informatics, 32(1) (2017), 095-116.
- [13] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys 10, 63-71.