Conference Paper
BibTex RIS Cite

On Some Generalized Deferred Cesàro Means-II

Year 2019, Volume: 2 Issue: 3, 198 - 200, 30.12.2019

Abstract

In this study, using the generalized difference operator $\Delta^{m}$, we introduce some new sequence spaces and investigate some topological properties of these sequence spaces.

Supporting Institution

FIRAT UNIVERSITY

Project Number

FUBAB FF.19.15

Thanks

This research was supported by Management Union of the Scientific Research Projects of Firat University under the Project Number: FUBAB FF.19.15. We would like to thank Firat University Scientific Research Projects Unit for their support.

References

  • [1] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
  • [3] M. Et, F. Nuray, $\Delta^{m}-$statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001), 961–969.
  • [4] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932), 413–421.
  • [5] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014), 1–11.
  • [6] B. Altay, F. Basar, On the fine spectrum of the difference operator $\Delta$ on $c_{0}$ and $c$, Inform. Sci. 168(1-4) (2004), 217–224.
  • [7] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
  • [8] V. K. Bhardwaj, S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(315) (2013), 9.
  • [9] M.Candan, Vector-valued FK-space defined by a modulus function and an infinite matrix: Thai J. of Math 12(1) (2014), 155-165.
  • [10] M. Et, On some generalized Cesàro difference sequence spaces, ˙Istanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229.
  • [11] M. Et, M. Mursaleen and M. I¸sık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013), 789–796.
  • [12] G.Kılınc, M. Candan, Some Generalized Fibonacci Difference Spaces defined by a Sequence of Modulus Functions, Facta Universitatis, Series: Mathematics and Informatics, 32(1) (2017), 095-116.
  • [13] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys 10, 63-71.
Year 2019, Volume: 2 Issue: 3, 198 - 200, 30.12.2019

Abstract

Project Number

FUBAB FF.19.15

References

  • [1] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
  • [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
  • [3] M. Et, F. Nuray, $\Delta^{m}-$statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001), 961–969.
  • [4] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932), 413–421.
  • [5] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014), 1–11.
  • [6] B. Altay, F. Basar, On the fine spectrum of the difference operator $\Delta$ on $c_{0}$ and $c$, Inform. Sci. 168(1-4) (2004), 217–224.
  • [7] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
  • [8] V. K. Bhardwaj, S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(315) (2013), 9.
  • [9] M.Candan, Vector-valued FK-space defined by a modulus function and an infinite matrix: Thai J. of Math 12(1) (2014), 155-165.
  • [10] M. Et, On some generalized Cesàro difference sequence spaces, ˙Istanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229.
  • [11] M. Et, M. Mursaleen and M. I¸sık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013), 789–796.
  • [12] G.Kılınc, M. Candan, Some Generalized Fibonacci Difference Spaces defined by a Sequence of Modulus Functions, Facta Universitatis, Series: Mathematics and Informatics, 32(1) (2017), 095-116.
  • [13] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys 10, 63-71.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mikail Et 0000-0001-8292-7819

Project Number FUBAB FF.19.15
Publication Date December 30, 2019
Acceptance Date December 12, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Et, M. (2019). On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology, 2(3), 198-200.
AMA Et M. On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology. December 2019;2(3):198-200.
Chicago Et, Mikail. “On Some Generalized Deferred Cesàro Means-II”. Conference Proceedings of Science and Technology 2, no. 3 (December 2019): 198-200.
EndNote Et M (December 1, 2019) On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology 2 3 198–200.
IEEE M. Et, “On Some Generalized Deferred Cesàro Means-II”, Conference Proceedings of Science and Technology, vol. 2, no. 3, pp. 198–200, 2019.
ISNAD Et, Mikail. “On Some Generalized Deferred Cesàro Means-II”. Conference Proceedings of Science and Technology 2/3 (December 2019), 198-200.
JAMA Et M. On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology. 2019;2:198–200.
MLA Et, Mikail. “On Some Generalized Deferred Cesàro Means-II”. Conference Proceedings of Science and Technology, vol. 2, no. 3, 2019, pp. 198-00.
Vancouver Et M. On Some Generalized Deferred Cesàro Means-II. Conference Proceedings of Science and Technology. 2019;2(3):198-200.