Conference Paper
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 11 - 18, 15.12.2020

Abstract

References

  • 1 A. Bouziani, N. Merazga, and S. Benamira, Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions, Nonlin. Anal. 69 (2008), 1515–1524.
  • 2 S. Cohn, K. Pfabe, and J. Redepenning, A similarity solution to a problem in nonlinear ion transport with a nonlocal condition, Math. Models Methods Appl. Sci. 9(3) (1999), 445–461.
  • 3 W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Q. Appl. Math. 40 (1982), 319–330.
  • 4 W.A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Q. Appl. Math. 41 (1983), 468–475.
  • 5 A. Hasanov, B. Pektas, and S. Hasanoglu, An analysis of nonlinear ion transport model including diffusion and migration, J. Math. Chem. 46(4) (2009), 1188–1202.
  • 6 L. Hu, L. Ma and J. Shen, Efficient spectral-Galerkin method and analysis for elliptic PDEs with non-local boundary conditions, J. Sci. Compu. 68(2) (2016), 417–437.
  • 7 A. Guezane-Lakoud, D. Belakroum , Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions, App. Math. Compu. 212 (2012), 4695–4702.
  • 8 J. Kacur, Method of Rothe in Evolution Equations, Teubner Texte zur Mathematik., Teubner, Leipzig, 1985.
  • 9 A. Merad, A. Bouziani and S. Araci, Existence and uniqueness for a solution of pseudohyperbolic equation with nonlocal noundary condition, Appl. Math. Inf. Sci. 9(4) (2015), 1855–1861.
  • 10 M. Slodicka and S. Dehilis, A numerical approach for a semilinear parabolic equation with a nonlocal boundary condition, J. Comput. Appl. Math. 231 (2009), 715–724.
  • 11 M. Slodicka and S. Dehilis, A nonlinear parabolic equation with a nonlocal boundary term, J. Comput. Appl. Math. 233(12) (2010), 3130–3138.
  • 12 M. Slodicka, Semilinear parabolic problems with nonlocal Dirichlet boundary conditions, Inverse. Prob. Sci. Eng. 19(5) (2011), 705–716.
  • 13 T. Zhao, C. Li, Z. Zang and Y. Wu, Chebyshev–Legendre pseudo-spectral method for the generalised Burgers–Fisher equation, Appl. Math. Model. 36(3)(2012), 1046–1056.

On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition

Year 2020, Volume: 3 Issue: 1, 11 - 18, 15.12.2020

Abstract

A semilinear pseudo-parabolic equation ∂t(u − ∆u) − ∆u = f(∇u) with a Dirichlet-type integral boundary condition is investigated in this contribution. Using the Rothe method which is based on a semi-discretization of the problem under consideration with respect to the time variable, we prove the existence and uniqueness of a solution in a weak sense. For the spatial discretization, a suitable approach based on Legendre spectral-method is presented. Two numerical examples are included to examine the effectiveness and accuracy of the proposed approach.

References

  • 1 A. Bouziani, N. Merazga, and S. Benamira, Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions, Nonlin. Anal. 69 (2008), 1515–1524.
  • 2 S. Cohn, K. Pfabe, and J. Redepenning, A similarity solution to a problem in nonlinear ion transport with a nonlocal condition, Math. Models Methods Appl. Sci. 9(3) (1999), 445–461.
  • 3 W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Q. Appl. Math. 40 (1982), 319–330.
  • 4 W.A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Q. Appl. Math. 41 (1983), 468–475.
  • 5 A. Hasanov, B. Pektas, and S. Hasanoglu, An analysis of nonlinear ion transport model including diffusion and migration, J. Math. Chem. 46(4) (2009), 1188–1202.
  • 6 L. Hu, L. Ma and J. Shen, Efficient spectral-Galerkin method and analysis for elliptic PDEs with non-local boundary conditions, J. Sci. Compu. 68(2) (2016), 417–437.
  • 7 A. Guezane-Lakoud, D. Belakroum , Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions, App. Math. Compu. 212 (2012), 4695–4702.
  • 8 J. Kacur, Method of Rothe in Evolution Equations, Teubner Texte zur Mathematik., Teubner, Leipzig, 1985.
  • 9 A. Merad, A. Bouziani and S. Araci, Existence and uniqueness for a solution of pseudohyperbolic equation with nonlocal noundary condition, Appl. Math. Inf. Sci. 9(4) (2015), 1855–1861.
  • 10 M. Slodicka and S. Dehilis, A numerical approach for a semilinear parabolic equation with a nonlocal boundary condition, J. Comput. Appl. Math. 231 (2009), 715–724.
  • 11 M. Slodicka and S. Dehilis, A nonlinear parabolic equation with a nonlocal boundary term, J. Comput. Appl. Math. 233(12) (2010), 3130–3138.
  • 12 M. Slodicka, Semilinear parabolic problems with nonlocal Dirichlet boundary conditions, Inverse. Prob. Sci. Eng. 19(5) (2011), 705–716.
  • 13 T. Zhao, C. Li, Z. Zang and Y. Wu, Chebyshev–Legendre pseudo-spectral method for the generalised Burgers–Fisher equation, Appl. Math. Model. 36(3)(2012), 1046–1056.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Abdeldjalil Chattouh

Khaled Saoudi This is me

Publication Date December 15, 2020
Acceptance Date October 1, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Chattouh, A., & Saoudi, K. (2020). On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology, 3(1), 11-18.
AMA Chattouh A, Saoudi K. On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology. December 2020;3(1):11-18.
Chicago Chattouh, Abdeldjalil, and Khaled Saoudi. “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”. Conference Proceedings of Science and Technology 3, no. 1 (December 2020): 11-18.
EndNote Chattouh A, Saoudi K (December 1, 2020) On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology 3 1 11–18.
IEEE A. Chattouh and K. Saoudi, “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”, Conference Proceedings of Science and Technology, vol. 3, no. 1, pp. 11–18, 2020.
ISNAD Chattouh, Abdeldjalil - Saoudi, Khaled. “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”. Conference Proceedings of Science and Technology 3/1 (December 2020), 11-18.
JAMA Chattouh A, Saoudi K. On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology. 2020;3:11–18.
MLA Chattouh, Abdeldjalil and Khaled Saoudi. “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”. Conference Proceedings of Science and Technology, vol. 3, no. 1, 2020, pp. 11-18.
Vancouver Chattouh A, Saoudi K. On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology. 2020;3(1):11-8.