1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
2 C. Nebiyev, A. Pancar, On Supplement Submodules, Ukrainian Math. J., 65(7) (2013), 1071-1078.
3 W. Xue, Characterizations of Semiperfect and Perfect Rings, Publ. Matematiques, 40 (1996), 115-125.
4 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601.
5 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
6 H. Zöschinger, Komplementierte Moduln Über Dedekindringen, J. of Algebra, 29 (1974), 42-56.
r-Small Submodules
Year 2020,
Volume: 3 Issue: 1, 33 - 36, 15.12.2020
In this work, every ring have unity and every module is unital left module. Let M be an R-module and N < M. If N < RadM, then N is called a radical small (or briefly r-small) submodule of M and denoted by N
1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
2 C. Nebiyev, A. Pancar, On Supplement Submodules, Ukrainian Math. J., 65(7) (2013), 1071-1078.
3 W. Xue, Characterizations of Semiperfect and Perfect Rings, Publ. Matematiques, 40 (1996), 115-125.
4 Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. of Math., 10(6) (2006), 1589-1601.
5 R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
6 H. Zöschinger, Komplementierte Moduln Über Dedekindringen, J. of Algebra, 29 (1974), 42-56.