Research Article
BibTex RIS Cite

A Pedagogical Approach to Teaching Modern Art History with Artificial Intelligence in Undergraduate Fine Arts Education

Year 2025, Volume: 54 Issue: 3, 1368 - 1404, 31.12.2025

Abstract

This study explores the pedagogical integration of artificial intelligence (AI) into a higher education art history curriculum, focusing on a study from the Modernism in Art course offered at Kocaeli University Faculty of Fine Arts. The course was conducted with a group of 10 third-year students from the Department of Painting. Students engaged in a structured instructional activity involving the reinterpretation of modern artworks through AI tools. The implementation process was conducted in two stages, midterm and final. The development of students in prompt writing, use of digital tools, and conceptual approaches was analyzed under five thematic categories: Prompt Writing Challenges, Tool Selection and Learning Curves, Interpretive Struggles and Adaptive Responses, Visual Outcomes-Stylistic Coherence, and Technical-Ethical Concerns. Data were primarily synthesized through the instructor’s pedagogical lens. To exemplify student development, selected anonymized prompt excerpts were included without identifying information. These excerpts do not include any personal data or identifiable student information, and their use complies with ethical standards for pedagogical documentation in classroom settings. The study reveals how AI-supported assignments enhance critical visual literacy and contribute to raising awareness of digital ethics. In this regard, it provides an important contribution to the development of AI-based pedagogical models in the field of art education.

References

  • Berry, D. M. ve Dieter, M. (2015). Postdigital aesthetics: Art, computation and design. Palgrave Macmillan.
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th Ed.). Sage Publications.
  • Dehouche, N. ve Dehouche, K. (2023). What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon, 9(6), e16757. https://doi.org/10.1016/j.heliyon.2023.e16757
  • Hutson, J. (2024). Integrating art and AI: Evaluating the educational impact of AI tools in digital art history learning. Forum for Art Studies, 1(1), 1–19.
  • Hutson, J. ve Robertson, B. (2023). Exploring the educational potential of AI generative art in 3D design fundamentals: A case study on prompt engineering and creative workflows. Global Journal of HUMAN-SOCIAL SCIENCE: A Arts & Humanities-Psychology, 23(2), 1-11.
  • Jindong, G., Zhen, H., Shuo, C., Ahmad, B., Bailan, H., Gengyuan, Z., Ruotong, L., Yao, Q., Volker, T. ve Philip, T. (2023). A systematic survey of prompt engineering on vision-language foundation models. arXiv:2307.12980 [cs.CV]. https://doi.org/10.48550/arXiv.2307.12980
  • Mezirow, J. (1997). Transformative learning: Theory to practice. New Directions for Adult and Continuing Education, 1997(74), 5–12. https://doi.org/10.1002/ace.7401
  • Miles, M. B. ve Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd Ed.). Sage Publications.
  • Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press. Weizenbaum, J. (1976). Computer power and human reason: From judgment to calculation. W. H. Freeman and Company.

Lisans Düzeyi Güzel Sanatlar Eğitiminde Modern Sanat Tarihini Yapay Zekâ ile Öğretmeye Yönelik Pedagojik Bir Yaklaşım

Year 2025, Volume: 54 Issue: 3, 1368 - 1404, 31.12.2025

Abstract

Bu çalışma, yapay zekânın (YZ) sanat tarihi yükseköğretim müfredatına pedagojik olarak nasıl entegre edilebileceğini incelemekte ve Kocaeli Üniversitesi Güzel Sanatlar Fakültesi’nde yürütülen Sanatta Modernizm dersine dayalı uygulamalı bir örnek sunmaktadır. Çalışma, Resim Bölümü 3. sınıf öğrencilerinden oluşan 10 kişilik bir grupla gerçekleştirilmiştir. Öğrenciler, YZ araçlarını kullanarak modern sanat yapıtlarını yeniden üretmeye yönelik yapılandırılmış bir etkinliğe katılmıştır. Uygulama süreci, vize ve final olmak üzere iki aşamada gerçekleştirilmiştir. Öğrencilerin istem (prompt) yazımı, dijital araç kullanımı ve kavramsal yaklaşımlarındaki gelişim, Prompt Yazım Zorlukları, Araç Seçimi ve Deneysel Süreçler, Yorumlama Güçlükleri ve Uyum Stratejileri, Görsel Çıktılar ve Üslupsal Tutarlılık, Teknik ve Etik Sorunlar olmak üzere beş tematik başlık altında analiz edilmiştir. Veriler, öğretim elemanının pedagojik bakış açısından türetilmiştir. Öğrenci gelişimini örneklemek amacıyla, kimlik bilgisi içermeyen bazı istem komutlarına yer verilmiştir. Bu alıntılar kişisel veri içermemekte olup, sınıf içi pedagojik uygulamalar kapsamında etik kurallara uygun şekilde kullanılmıştır. Bu çalışma, YZ destekli ödevlerin eleştirel görsel okuryazarlığı nasıl geliştirdiğini ve dijital etik farkındalık açısından ne tür katkılar sunduğunu ortaya koymaktadır. Bu bağlamda, sanat eğitimi alanında yapay zekâ temelli pedagojik modellerin geliştirilmesine yönelik önemli bir katkı sunar.

References

  • Berry, D. M. ve Dieter, M. (2015). Postdigital aesthetics: Art, computation and design. Palgrave Macmillan.
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th Ed.). Sage Publications.
  • Dehouche, N. ve Dehouche, K. (2023). What's in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon, 9(6), e16757. https://doi.org/10.1016/j.heliyon.2023.e16757
  • Hutson, J. (2024). Integrating art and AI: Evaluating the educational impact of AI tools in digital art history learning. Forum for Art Studies, 1(1), 1–19.
  • Hutson, J. ve Robertson, B. (2023). Exploring the educational potential of AI generative art in 3D design fundamentals: A case study on prompt engineering and creative workflows. Global Journal of HUMAN-SOCIAL SCIENCE: A Arts & Humanities-Psychology, 23(2), 1-11.
  • Jindong, G., Zhen, H., Shuo, C., Ahmad, B., Bailan, H., Gengyuan, Z., Ruotong, L., Yao, Q., Volker, T. ve Philip, T. (2023). A systematic survey of prompt engineering on vision-language foundation models. arXiv:2307.12980 [cs.CV]. https://doi.org/10.48550/arXiv.2307.12980
  • Mezirow, J. (1997). Transformative learning: Theory to practice. New Directions for Adult and Continuing Education, 1997(74), 5–12. https://doi.org/10.1002/ace.7401
  • Miles, M. B. ve Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd Ed.). Sage Publications.
  • Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press. Weizenbaum, J. (1976). Computer power and human reason: From judgment to calculation. W. H. Freeman and Company.
There are 9 citations in total.

Details

Primary Language English
Subjects Fine Arts Education
Journal Section Research Article
Authors

Zehra Canan Bayer 0000-0001-8593-4125

Submission Date June 15, 2025
Acceptance Date September 3, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 54 Issue: 3

Cite

APA Bayer, Z. C. (2025). A Pedagogical Approach to Teaching Modern Art History with Artificial Intelligence in Undergraduate Fine Arts Education. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 54(3), 1368-1404. https://doi.org/10.14812/cuefd.1719982

Copyright © 2011

Cukurova University Faculty of Education

All rights reserved