Research Article
BibTex RIS Cite

Biyogaz Üretiminde Atıkların Verim Üzerine Etkilerinin Araştırılması

Year 2021, , 581 - 589, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1004337

Abstract

Ülkelerin refah seviyesi kişi başı enerji tüketim miktarları ve sanayii gelişimleri gibi parametreler birbiriyle doğrudan alakalıdır. Dünya nüfusunun hızlı bir şekilde artması ve yaşam standartların
yükselmesi gibi nedenler fosil kökenli yakıtların tüketim hızının sürekli artmasına sebep olmaktadır. Fosil kaynaklar yenilenebilir olmadığından dolayı biyodizel, biyogaz, rüzgâr, hidroelektrik, güneş enerjisi, yeni temiz alternatif sürdürülebilir, gibi enerji kaynaklarına olan ihtiyaç her geçen gün artmaktadır. Bu alternatif enerjiler içerisinde biyogaz üretimi, kurulum kolaylığı, bol hammadde miktarı ve kolay ulaşılabilirlik, düşük maliyet, işlenmiş biyokütle kaynağının gübre verimini artırması gibi özelliklerinden dolayı tercih edilmektedir. Biyogaz üretiminde, reaktör tasarımı, reaksiyon şartlarının değiştirilmesi, bakterilerin beslenme türleri biyogaz üretimini artırmaktadır. Yapılan bu çalışmada, 50 L (Litre)’lik laboratuvar tipi pilot reaktör kullanılarak uygun fermantasyon şartları sağlanmış ve çeşitli endüstriyel evsel atıklar gibi farklı atık türlerinin biyogaz üretimi üzerine etkileri araştırılmıştır. Elde edilen verilere göre, biyogaz üretimi farklı atık türlerine göre değişiklik göstermektedir.

References

  • 1. Lindsey, R., 2020. Climate Change: Atmospheric Carbon Dioxide. In: Dlugokencky E., https://www.climate.gov/, Erişim Tarihi: 05.05.2021.
  • 2. Agency (EPA) EP 2021. Understanding Global Warming Potentials, https://www.epa.gov, Erişim Tarihi: 02.05.2021.
  • 3. Khalil, M.A.K., 2003. Atmospheric Methane its Role in the Global Environment. Agricultural and Forest Meteorology, 126, 125-126, doi: 10.1016/j.agrformet.2003.09.004.
  • 4. Sarıbıyık, O.Y., Özcanlı, M., Serin, H., Serin, S., Aydın K., 2010. Biodiesel Production from Ricinus Communis Oil and its Blends with Soybean Biodiesel. Strojniški Vestnik-Journal of Mechanical Engineering, 56(12), 811-816.
  • 5. Agency, E., 2020. Energy in Sweden 2020 An Overview. Swedish Energy Agency, https://energimyndigheten.aw2m.se/Home.mvc?ResourceId=174155, Erişim Tarihi: 01.03.2021.
  • 6. Eyl-Mazzega M.A., Mathieu, C., 2019. Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy, 76.
  • 7. Sif, B.S., Kofoed, W., Herrmann, A., Tengbjerg, I., Bernard, K.K., 2014. Experiences with Biogas in Denmark. Department of Management Engineering, 27.
  • 8. Benato, A., Macor, A., 2019. Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. Mdpi Energy, 12(6), 979.
  • 9. Gu, L., Zhang, Y.X., Wang, J.Z., Chen, G., Battye, H., 2016. Where is the Future of China’s Biogas? Review, Forecast, and Policy Implications. Pet. Sci. Springer, 13(2016), 604-624.
  • 10. Winquist, E., Rikkonen, P., Pyysiainen, J., Varho, V., 2019. Is Biogas an Energy or a Sustainability Product?-Business Opportunities in the Finnish Biogas Branch. Journal of Cleaner Production, 233, 1344-1354.
  • 11. Havrysh, V., Kalinichenko, A., Mentel, G., Olejarz, T., 2020. Commercial Biogas Plants: Lessons for Ukraine. MDPI Energies, 13(10), 2668.
  • 12. Murray, B. C., Galik, C. S., Vegh, T., 2014. An Assessment of Market Potential in a CarbonConstrained Future. Nicholas Institute Report, 59.
  • 13. Nsair, A., Cinar, S. O., Alassali, A., Qdais, H. A., Kuchta, K., 2020. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies, 13(15), 3761.
  • 14. Qiliang, L., Zhang, Y., Mieghem, A.V., Chen, Y.C., Yu, N., Yang, Y., Yin, H., 2020. Design and Experiment of a Sun-powered Smart Building Envelope with Automatic Control. Energy&Buildings, 223, 110173, 1-17.
  • 15. Patel, R.P., Nagababu, G., Kumar, S.V.V.A., Kachhwah, S.S., 2020. Wave Resource Assessment and Wave Energy Exploitation Along the Indian Coast. Ocean Engineering 217, 107834.
  • 16. Zhang, Z., Zhang, G., Li, W., Li, C., Xu, G., 2016. Enhanced Biogas Production from Sorghum Stem by Co-digestion with Cow Manure. International Journal of Hydrogen Energy, 41(21), 9153-9158.
  • 17. Ren, S., Dou, B., Ning, F., 2020. Geothermal Energy Exploitation from Depleted Hightemperature Gas Reservoirs by Recycling CO2: the Superiority and Existing Problems. Geoscience Frontiers Pre Proof. https://doi.org/10.1016/j.gsf.
  • 18. Zhoua, B., Or, S.W., Chan, K.W., Duan, H., Wu, Q., Wang, H., Meng, Y., 2021. Short-term Prediction of Wind Power and its Ramp Events Based on Semisupervised Generative Adversarial Network. Electrical Power and Energy Systems, 125(2), 106411.
  • 19. India, B. Pi., 2021. Biogas: A Fit Option for Rural Energy. Erişim Tarihi: 05.06.2021.
  • 20. Abubaker, J., Risberg, K., Pell, M., 2012. Biogas Residues as Fertilisers–effects on Wheat Growth and Soil Microbial Activities. Applied Energy, 99, 126-134.
  • 21. Boreka, K., Romaniuk, W., 2020. Biogas Installation for Harvesting Energy and Unitlization of Natural Fertilisers. Sciendo Agricultural Engineering, 24(1), 1-14.
  • 22. Siddique, M.N.I., Khalid, Z.B., Ibrahim, M.Z.B., 2020. Effect of Additional Nutrients on Bio-methane Production from Anaerobic Digestion of Farming Waste: Feasibility & Fertilizer Recovery. Journal of Environmental Chemical Engineering, 8(1), 103569.
  • 23. Valentinuzzi, F., Cavani, L., Porfido, C., Terzano, R., Pii, Y., Cesco, S., Marzadori, C., Mimmo, T., 2020. The Fertilising Potential of Manure-based Biogas Fermentation Residues: Pelleted vs. Liquid Digestate. Heliyon, 6(2), 03325, 1-15.
  • 24. Ferreira, S. F., Buller, L. S., Berni, M., Forster, C. T., 2019. Environmental Impact Assessment of end-uses of Biomethane. Journal of Cleaner Production, 230, 613-621.
  • 25. Tabatabaei, M., Aghbashlo, M., Valijanian, E., Panahi, H.K.S., Nizami, A.S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., Karimi, K., 2020. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production. Part 1: Upstream Strategies. Renewable Energy, 146, 1204-12020.
  • 26. Orlando, M.Q., Borja, V.M., 2020. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies, 13(14), 3573, 1-25.
  • 27. Pavi, S., Kramer, L.E., Gomes, L.P., Miranda, L.A.S., 2017. Biogas Production from Codigestion of Organic Fraction of Municipal Solid Waste and Fruit and Vegetable Waste. Bioresource Technology, 228, 362-367.
  • 28. Chukeaw, T., Tiyathaa, W., Jaroenpanona, K., Witoon, T., Kongkachuichay, P., Chareonpanich, M., Faungnawakij, K., Yigit, N., Rupprechter, G., Seubsai, A., 2021. Synthesis of Value-added Hydrocarbons Via Oxidative Coupling of Methane Over MnTiO3-Na2WO4/SBA-15 Catalysts. Process Safety and Environmental Protection, 148, 1110–1122.
  • 29. Koniuszewska, I., Korzeniewska, E., Czatzkowska, M., Harnisz, M., 2020. Intensification of Biogas Production Using Various Technologies: A Review. International Journal of Energy Research, 44(8), 6240–6258.
  • 30. Montingelli, M.E., Tedesco, S., Olabi, A.G., 2015. Biogas Production from Algal Biomass: A Review. Renewable and Sustainable Energy Reviews, 43, 961–972.
  • 31. Tsigkou, K., Zagklis, D., Tsafrakidou, P., Zapanti, P., Manthos, G., Karamitou, K., Zafiri, C., Kornaros, M., 2021. Expired Food Products and Used Disposable Adult Nappies Mesophilic Anaerobic Co-digestion: Biochemical Methane Potential, Feedstock Pretreatment and Two-stage System Performance. Renewable Energy, 168(7), 309-318.
  • 32. Thompson, T.M., Young, B.R., Baroutian, S., 2021. Enhancing Biogas Production from Caribbean Pelagic Sargassum Utilising Hydrothermal Pretreatment and Anaerobic Codigestion with Food Waste. Chemosphere, 275, 130035.
  • 33. Jabłonski, S.J., Kułazynski. M., Sikora, I., Łukaszewicz, M., 2017. The Influence of Different Pretreatment Methods on Biogas Production from Jatropha Curcas oil Cake. Journal of Environmental Management, 203, 714-719.
  • 34. Huang, Q., Yu, Y., Wan, Y., Wang, Q., Luo, Z., Qiao, Y., Su, D., Li, H., 2018. Effects of Continuous Fertilization on Bioavailability and Fractionation of Cadmium in soil and its Uptake by Rice (Oryza sativa L.). Journal of Environmental Management, 215, 13-21.
  • 35. Ma, Y., Yin, Y., Liu, Y., 2017. New Insights Into Co-digestion of Activated Sludge and Food Waste: Biogas Versus Biofertilizer. Bioresource Technology, 241, 448–453.
  • 36. Scholwin, F., Grope, J., Clinkscales, A., Boshell, F., Saygin, D., Salgado, A., Seleem, A., 2018. Biogas for Road Vehicles Technology Brief. The International Renewable Energy Agency (IRENA). https://www.irena.org/-/media/files/irena/agency/publication/2017/mar/irena_biogas_for_road_vehicles_2017.pdf. Erişim Tarihi: 08.05.2021.
  • 37. Niskanen, J., Magnusson, D., 2021. Understanding Upscaling and Stagnation of Farm-based Biogas Production in Sweden Through Transitional and Farming Logics. Journal of Cleaner Production, 279(3), 123235.
  • 38. Pramanika, S.K., Sujaa, F.B., Zaina, S.M., Pramanikb, B.K., 2019. The Anaerobic Digestion Process of Biogas Production from Food Waste: Prospects and Constraints. Bioresource Technology Reports, 8, 100310.
  • 39. Azadbakht, M., Ardebili, S.M.S., Rahmani, M., 2021. Potential for the Production of Biofuels from Agricultural Waste, Livestock, and Slaughterhouse Waste in Golestan Province, Iran. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01308-0
  • 40. Lanari, D., Franci, C., 1998. Biogas Production from Solid Wastes Removed from Fiih farm Effluents. Aquatic Living Resources, 11(4), 289-295.
  • 41. Sarker, S., 2020. By-products of Fish-oil Refinery as Potential Substrates for Biogas Production in Norway: A Preliminary Study. Results in Engineering, 6, 100137, 1-8.
  • 42. Singh, R., Karki, A.B., Shrestha, J.N., 2008. Production of Biogas from Poultry Waste. International Journal of Renewable Energy, 3(1), 11-20.
  • 43. Silva, T.H.L., Santos, L.A., Oliveira, C.R.M., Porto, T.S., Jucá, J.F.T., Santos, A.F.M.S., 2021. Determination of Methane Generation Potential and Evaluation of Kinetic Models in Poultry Wastes. Biocatalysis and Agricultural Biotechnology, 32, 101936, 1-8.
  • 44. Quiroz, M., Varnero, M.T., Cuevas, J.G., Sierra, H., 2021. Cactus Pear (Opuntia ficusindica) in Areas with Limited Rainfall for the Production of Biogas and Biofertilizer. Journal of Cleaner Production, 289, 125839, 1-16.
  • 45. Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G., Kovács, K.L., 2013. Biogas Production from Protein-Rich Biomass: FedBatch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition. Plos One, 8(10), 1-18.
  • 46. Battista, F., Fino, D. Mancini, G., 2016. Optimization of Biogas Production from Coffee Production Waste. Bioresource Technology, 200, 884–890.
  • 47. Cardoso, R.R., Neto, R.O., Dalmeid, C.S., Nascimento, T., Pressete, C.G., Azevedo, L., Martinod, H.S.D., Camerone, L.C., Ferreira, M.S.L., Barros, F., 2020. Kombuchas from Green and Black Teas have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Research International, 128, 1-10.
  • 48. Malik, W., Mohan, C., Annachhatre, A.P., 2020. Community Based Biogas Plant Utilizing Food Waste and Cow Dung. Materials Today: Proceedings, 28(3), 1910-1915.
  • 49. Chuanchai, A., Ramaraj, R., 2018. Sustainability Assessment of Biogas Production from Buffalo Grass and Dung: Biogas Purification and Bio-fertilizer. Springer Biotech, 8(3), 2-11.
  • 50. Spence, A., Madrigal, E.B., Patil, R., Fernándeza, Y.B., 2019. Evaluation of Anaerobic Digestibility of Energy Crops and Agricultural Byproducts. Bioresource Technology Reports, 5, 243–250.
  • 51. Feng, L., Ward, A.J., Guixe, P.G., Moset, V., Møller, H.B., 2018. Flexible Biogas Production by Pulse Feeding Maize Silage or Briquetted Meadow Grass into Continuous Stirred Tank Reactors. Biosystems Engineering, 174, 239-248.
  • 52. Comino, E., Rosso, M., Riggio, V., 2009. Development of a Pilot Scale Anaerobic Digester for Biogas Production from Cow Manure and Whey Mix. Bioresource Technology, 100(21), 5072–5078.
  • 53. Xue, S., Wang, Y., Lyuc, X., Zhao, N., Song, J., Wang, X., Yang, G., 2020. Interactive Effects of Carbohydrate, Lipid, Protein Composition and Carbon/nitrogen Ratio on Biogas Production of Different Food Wastes. Bioresource Technology, 312, 123566.
  • 54. Hirakata, Y., Hatamoto, M., Oshiki, M., Watari, T., Araki, N., Yamaguchi, T., 2020. Food Selectivity of Anaerobic Protists and Direct Evidence for Methane Production Using Carbon from Prey Bacteria by Endosymbiotic Methanogen. ISME, 14, 1873–1885.
  • 55. Cheng, J., Ding, L., Lin, R., Yue, L., Liu, J., Junhu, Zhou, K.C., 2016. Fermentative Biohydrogen and Biomethane Co-production from Mixture of Food Waste and Sewage Sludge: Effects of Physiochemical Properties and Mix Ratios on Fermentation Performance. Applied Energy, 184, 1-8.
  • 56. Lu, X., Jin, W., Xue, S., Wang, X., 2017. Effects of Waste Sources on Performance of Anaerobic Codigestion of Complex Organic Wastes: Taking Food Waste as an Example. Nature, 7(1), 15702, 1-9.
  • 57. Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., Aivasidis, A., 2021. Bioenergy in the Era of Circular Economy: Anaerobic Digestion Technological Solutions to Produce Biogas from Lipid-rich Wastes. Renewable Energy, 168, 438-447.
  • 58. Rasit, N., Idris, A., Harun, R., Azlina, W., Ghani, W.A.K., 2015. Effects of Lipid Inhibition on Biogas Production of Anaerobic Digestion from Oily Effluents and Sludges: An Overview. Renewable and Sustainable Energy Reviews, 45, 351–358.
  • 59. Rahardiyan, D., 2018. Antibacterial Potential of Catechin of Tea (Camellia sinensis) and its Applications. Food Research, 3(1), 1-6.
  • 60. Lia, W., Khalida, H., Zhua, Z., Zhangb, R., Liua, G., Chena, C., Thorin, E., 2018. Methane Production Through Anaerobic Digestion: Participation and Digestion Characteristics of Cellulose, Hemicellulose and Lignin. Applied Energy, 226, 1219–1228.
  • 61. Uzun, B.B., Varol, E.A., Ates, F., Özbay, N., Pütün, A. E., 2010. Synthetic Fuel Production from Tea Waste: Characterisation of Bio-oil and Bio-char. Fuel, 89, 176–184.
  • 62. Srinivasan, P., Smolke, C.D., 2020. Biosynthesis of Medicinal Tropane Alkaloids in Yeast. Nature, 585, 614-619.
Year 2021, , 581 - 589, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1004337

Abstract

References

  • 1. Lindsey, R., 2020. Climate Change: Atmospheric Carbon Dioxide. In: Dlugokencky E., https://www.climate.gov/, Erişim Tarihi: 05.05.2021.
  • 2. Agency (EPA) EP 2021. Understanding Global Warming Potentials, https://www.epa.gov, Erişim Tarihi: 02.05.2021.
  • 3. Khalil, M.A.K., 2003. Atmospheric Methane its Role in the Global Environment. Agricultural and Forest Meteorology, 126, 125-126, doi: 10.1016/j.agrformet.2003.09.004.
  • 4. Sarıbıyık, O.Y., Özcanlı, M., Serin, H., Serin, S., Aydın K., 2010. Biodiesel Production from Ricinus Communis Oil and its Blends with Soybean Biodiesel. Strojniški Vestnik-Journal of Mechanical Engineering, 56(12), 811-816.
  • 5. Agency, E., 2020. Energy in Sweden 2020 An Overview. Swedish Energy Agency, https://energimyndigheten.aw2m.se/Home.mvc?ResourceId=174155, Erişim Tarihi: 01.03.2021.
  • 6. Eyl-Mazzega M.A., Mathieu, C., 2019. Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy, 76.
  • 7. Sif, B.S., Kofoed, W., Herrmann, A., Tengbjerg, I., Bernard, K.K., 2014. Experiences with Biogas in Denmark. Department of Management Engineering, 27.
  • 8. Benato, A., Macor, A., 2019. Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. Mdpi Energy, 12(6), 979.
  • 9. Gu, L., Zhang, Y.X., Wang, J.Z., Chen, G., Battye, H., 2016. Where is the Future of China’s Biogas? Review, Forecast, and Policy Implications. Pet. Sci. Springer, 13(2016), 604-624.
  • 10. Winquist, E., Rikkonen, P., Pyysiainen, J., Varho, V., 2019. Is Biogas an Energy or a Sustainability Product?-Business Opportunities in the Finnish Biogas Branch. Journal of Cleaner Production, 233, 1344-1354.
  • 11. Havrysh, V., Kalinichenko, A., Mentel, G., Olejarz, T., 2020. Commercial Biogas Plants: Lessons for Ukraine. MDPI Energies, 13(10), 2668.
  • 12. Murray, B. C., Galik, C. S., Vegh, T., 2014. An Assessment of Market Potential in a CarbonConstrained Future. Nicholas Institute Report, 59.
  • 13. Nsair, A., Cinar, S. O., Alassali, A., Qdais, H. A., Kuchta, K., 2020. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies, 13(15), 3761.
  • 14. Qiliang, L., Zhang, Y., Mieghem, A.V., Chen, Y.C., Yu, N., Yang, Y., Yin, H., 2020. Design and Experiment of a Sun-powered Smart Building Envelope with Automatic Control. Energy&Buildings, 223, 110173, 1-17.
  • 15. Patel, R.P., Nagababu, G., Kumar, S.V.V.A., Kachhwah, S.S., 2020. Wave Resource Assessment and Wave Energy Exploitation Along the Indian Coast. Ocean Engineering 217, 107834.
  • 16. Zhang, Z., Zhang, G., Li, W., Li, C., Xu, G., 2016. Enhanced Biogas Production from Sorghum Stem by Co-digestion with Cow Manure. International Journal of Hydrogen Energy, 41(21), 9153-9158.
  • 17. Ren, S., Dou, B., Ning, F., 2020. Geothermal Energy Exploitation from Depleted Hightemperature Gas Reservoirs by Recycling CO2: the Superiority and Existing Problems. Geoscience Frontiers Pre Proof. https://doi.org/10.1016/j.gsf.
  • 18. Zhoua, B., Or, S.W., Chan, K.W., Duan, H., Wu, Q., Wang, H., Meng, Y., 2021. Short-term Prediction of Wind Power and its Ramp Events Based on Semisupervised Generative Adversarial Network. Electrical Power and Energy Systems, 125(2), 106411.
  • 19. India, B. Pi., 2021. Biogas: A Fit Option for Rural Energy. Erişim Tarihi: 05.06.2021.
  • 20. Abubaker, J., Risberg, K., Pell, M., 2012. Biogas Residues as Fertilisers–effects on Wheat Growth and Soil Microbial Activities. Applied Energy, 99, 126-134.
  • 21. Boreka, K., Romaniuk, W., 2020. Biogas Installation for Harvesting Energy and Unitlization of Natural Fertilisers. Sciendo Agricultural Engineering, 24(1), 1-14.
  • 22. Siddique, M.N.I., Khalid, Z.B., Ibrahim, M.Z.B., 2020. Effect of Additional Nutrients on Bio-methane Production from Anaerobic Digestion of Farming Waste: Feasibility & Fertilizer Recovery. Journal of Environmental Chemical Engineering, 8(1), 103569.
  • 23. Valentinuzzi, F., Cavani, L., Porfido, C., Terzano, R., Pii, Y., Cesco, S., Marzadori, C., Mimmo, T., 2020. The Fertilising Potential of Manure-based Biogas Fermentation Residues: Pelleted vs. Liquid Digestate. Heliyon, 6(2), 03325, 1-15.
  • 24. Ferreira, S. F., Buller, L. S., Berni, M., Forster, C. T., 2019. Environmental Impact Assessment of end-uses of Biomethane. Journal of Cleaner Production, 230, 613-621.
  • 25. Tabatabaei, M., Aghbashlo, M., Valijanian, E., Panahi, H.K.S., Nizami, A.S., Ghanavati, H., Sulaiman, A., Mirmohamadsadeghi, S., Karimi, K., 2020. A Comprehensive Review on Recent Biological Innovations to Improve Biogas Production. Part 1: Upstream Strategies. Renewable Energy, 146, 1204-12020.
  • 26. Orlando, M.Q., Borja, V.M., 2020. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies, 13(14), 3573, 1-25.
  • 27. Pavi, S., Kramer, L.E., Gomes, L.P., Miranda, L.A.S., 2017. Biogas Production from Codigestion of Organic Fraction of Municipal Solid Waste and Fruit and Vegetable Waste. Bioresource Technology, 228, 362-367.
  • 28. Chukeaw, T., Tiyathaa, W., Jaroenpanona, K., Witoon, T., Kongkachuichay, P., Chareonpanich, M., Faungnawakij, K., Yigit, N., Rupprechter, G., Seubsai, A., 2021. Synthesis of Value-added Hydrocarbons Via Oxidative Coupling of Methane Over MnTiO3-Na2WO4/SBA-15 Catalysts. Process Safety and Environmental Protection, 148, 1110–1122.
  • 29. Koniuszewska, I., Korzeniewska, E., Czatzkowska, M., Harnisz, M., 2020. Intensification of Biogas Production Using Various Technologies: A Review. International Journal of Energy Research, 44(8), 6240–6258.
  • 30. Montingelli, M.E., Tedesco, S., Olabi, A.G., 2015. Biogas Production from Algal Biomass: A Review. Renewable and Sustainable Energy Reviews, 43, 961–972.
  • 31. Tsigkou, K., Zagklis, D., Tsafrakidou, P., Zapanti, P., Manthos, G., Karamitou, K., Zafiri, C., Kornaros, M., 2021. Expired Food Products and Used Disposable Adult Nappies Mesophilic Anaerobic Co-digestion: Biochemical Methane Potential, Feedstock Pretreatment and Two-stage System Performance. Renewable Energy, 168(7), 309-318.
  • 32. Thompson, T.M., Young, B.R., Baroutian, S., 2021. Enhancing Biogas Production from Caribbean Pelagic Sargassum Utilising Hydrothermal Pretreatment and Anaerobic Codigestion with Food Waste. Chemosphere, 275, 130035.
  • 33. Jabłonski, S.J., Kułazynski. M., Sikora, I., Łukaszewicz, M., 2017. The Influence of Different Pretreatment Methods on Biogas Production from Jatropha Curcas oil Cake. Journal of Environmental Management, 203, 714-719.
  • 34. Huang, Q., Yu, Y., Wan, Y., Wang, Q., Luo, Z., Qiao, Y., Su, D., Li, H., 2018. Effects of Continuous Fertilization on Bioavailability and Fractionation of Cadmium in soil and its Uptake by Rice (Oryza sativa L.). Journal of Environmental Management, 215, 13-21.
  • 35. Ma, Y., Yin, Y., Liu, Y., 2017. New Insights Into Co-digestion of Activated Sludge and Food Waste: Biogas Versus Biofertilizer. Bioresource Technology, 241, 448–453.
  • 36. Scholwin, F., Grope, J., Clinkscales, A., Boshell, F., Saygin, D., Salgado, A., Seleem, A., 2018. Biogas for Road Vehicles Technology Brief. The International Renewable Energy Agency (IRENA). https://www.irena.org/-/media/files/irena/agency/publication/2017/mar/irena_biogas_for_road_vehicles_2017.pdf. Erişim Tarihi: 08.05.2021.
  • 37. Niskanen, J., Magnusson, D., 2021. Understanding Upscaling and Stagnation of Farm-based Biogas Production in Sweden Through Transitional and Farming Logics. Journal of Cleaner Production, 279(3), 123235.
  • 38. Pramanika, S.K., Sujaa, F.B., Zaina, S.M., Pramanikb, B.K., 2019. The Anaerobic Digestion Process of Biogas Production from Food Waste: Prospects and Constraints. Bioresource Technology Reports, 8, 100310.
  • 39. Azadbakht, M., Ardebili, S.M.S., Rahmani, M., 2021. Potential for the Production of Biofuels from Agricultural Waste, Livestock, and Slaughterhouse Waste in Golestan Province, Iran. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01308-0
  • 40. Lanari, D., Franci, C., 1998. Biogas Production from Solid Wastes Removed from Fiih farm Effluents. Aquatic Living Resources, 11(4), 289-295.
  • 41. Sarker, S., 2020. By-products of Fish-oil Refinery as Potential Substrates for Biogas Production in Norway: A Preliminary Study. Results in Engineering, 6, 100137, 1-8.
  • 42. Singh, R., Karki, A.B., Shrestha, J.N., 2008. Production of Biogas from Poultry Waste. International Journal of Renewable Energy, 3(1), 11-20.
  • 43. Silva, T.H.L., Santos, L.A., Oliveira, C.R.M., Porto, T.S., Jucá, J.F.T., Santos, A.F.M.S., 2021. Determination of Methane Generation Potential and Evaluation of Kinetic Models in Poultry Wastes. Biocatalysis and Agricultural Biotechnology, 32, 101936, 1-8.
  • 44. Quiroz, M., Varnero, M.T., Cuevas, J.G., Sierra, H., 2021. Cactus Pear (Opuntia ficusindica) in Areas with Limited Rainfall for the Production of Biogas and Biofertilizer. Journal of Cleaner Production, 289, 125839, 1-16.
  • 45. Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G., Kovács, K.L., 2013. Biogas Production from Protein-Rich Biomass: FedBatch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition. Plos One, 8(10), 1-18.
  • 46. Battista, F., Fino, D. Mancini, G., 2016. Optimization of Biogas Production from Coffee Production Waste. Bioresource Technology, 200, 884–890.
  • 47. Cardoso, R.R., Neto, R.O., Dalmeid, C.S., Nascimento, T., Pressete, C.G., Azevedo, L., Martinod, H.S.D., Camerone, L.C., Ferreira, M.S.L., Barros, F., 2020. Kombuchas from Green and Black Teas have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Research International, 128, 1-10.
  • 48. Malik, W., Mohan, C., Annachhatre, A.P., 2020. Community Based Biogas Plant Utilizing Food Waste and Cow Dung. Materials Today: Proceedings, 28(3), 1910-1915.
  • 49. Chuanchai, A., Ramaraj, R., 2018. Sustainability Assessment of Biogas Production from Buffalo Grass and Dung: Biogas Purification and Bio-fertilizer. Springer Biotech, 8(3), 2-11.
  • 50. Spence, A., Madrigal, E.B., Patil, R., Fernándeza, Y.B., 2019. Evaluation of Anaerobic Digestibility of Energy Crops and Agricultural Byproducts. Bioresource Technology Reports, 5, 243–250.
  • 51. Feng, L., Ward, A.J., Guixe, P.G., Moset, V., Møller, H.B., 2018. Flexible Biogas Production by Pulse Feeding Maize Silage or Briquetted Meadow Grass into Continuous Stirred Tank Reactors. Biosystems Engineering, 174, 239-248.
  • 52. Comino, E., Rosso, M., Riggio, V., 2009. Development of a Pilot Scale Anaerobic Digester for Biogas Production from Cow Manure and Whey Mix. Bioresource Technology, 100(21), 5072–5078.
  • 53. Xue, S., Wang, Y., Lyuc, X., Zhao, N., Song, J., Wang, X., Yang, G., 2020. Interactive Effects of Carbohydrate, Lipid, Protein Composition and Carbon/nitrogen Ratio on Biogas Production of Different Food Wastes. Bioresource Technology, 312, 123566.
  • 54. Hirakata, Y., Hatamoto, M., Oshiki, M., Watari, T., Araki, N., Yamaguchi, T., 2020. Food Selectivity of Anaerobic Protists and Direct Evidence for Methane Production Using Carbon from Prey Bacteria by Endosymbiotic Methanogen. ISME, 14, 1873–1885.
  • 55. Cheng, J., Ding, L., Lin, R., Yue, L., Liu, J., Junhu, Zhou, K.C., 2016. Fermentative Biohydrogen and Biomethane Co-production from Mixture of Food Waste and Sewage Sludge: Effects of Physiochemical Properties and Mix Ratios on Fermentation Performance. Applied Energy, 184, 1-8.
  • 56. Lu, X., Jin, W., Xue, S., Wang, X., 2017. Effects of Waste Sources on Performance of Anaerobic Codigestion of Complex Organic Wastes: Taking Food Waste as an Example. Nature, 7(1), 15702, 1-9.
  • 57. Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., Aivasidis, A., 2021. Bioenergy in the Era of Circular Economy: Anaerobic Digestion Technological Solutions to Produce Biogas from Lipid-rich Wastes. Renewable Energy, 168, 438-447.
  • 58. Rasit, N., Idris, A., Harun, R., Azlina, W., Ghani, W.A.K., 2015. Effects of Lipid Inhibition on Biogas Production of Anaerobic Digestion from Oily Effluents and Sludges: An Overview. Renewable and Sustainable Energy Reviews, 45, 351–358.
  • 59. Rahardiyan, D., 2018. Antibacterial Potential of Catechin of Tea (Camellia sinensis) and its Applications. Food Research, 3(1), 1-6.
  • 60. Lia, W., Khalida, H., Zhua, Z., Zhangb, R., Liua, G., Chena, C., Thorin, E., 2018. Methane Production Through Anaerobic Digestion: Participation and Digestion Characteristics of Cellulose, Hemicellulose and Lignin. Applied Energy, 226, 1219–1228.
  • 61. Uzun, B.B., Varol, E.A., Ates, F., Özbay, N., Pütün, A. E., 2010. Synthetic Fuel Production from Tea Waste: Characterisation of Bio-oil and Bio-char. Fuel, 89, 176–184.
  • 62. Srinivasan, P., Smolke, C.D., 2020. Biosynthesis of Medicinal Tropane Alkaloids in Yeast. Nature, 585, 614-619.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İrfan Ruhi Uçar This is me

Zekeriya Özer This is me

Oğuz Yunus Sarıbıyık

Publication Date September 30, 2021
Published in Issue Year 2021

Cite

APA Uçar, İ. R., Özer, Z., & Sarıbıyık, O. Y. (2021). Biyogaz Üretiminde Atıkların Verim Üzerine Etkilerinin Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 581-589. https://doi.org/10.21605/cukurovaumfd.1004337