Research Article
BibTex RIS Cite

İki Aşamalı Organik Rankine Çevriminde Farklı Soğutucu Akışkan Kullanımının Sistem Performansına Etkisi

Year 2021, , 669 - 679, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005357

Abstract

Bu çalışmada mühendislik denklem çözücü program (Engineering Equation Solver - EES) kullanılarak iki kademeli bir Organik Rankine Çevriminin (ORC) enerji analizi yapılmıştır. Birinci ve ikinci kademelerde sekiz farklı organik akışkan (R134a, R410a, RC318, R407c, R22, R23, R116 ve R218) çiftler halinde belirli sıcaklık limitleri arasında kullanılmıştır. ORC’nin yüksek ısıl verim ve net iş çıktısı için uygun bir soğutucu akışkan veya soğutucu akışkan çifti seçimi yapmak çok önemlidir. Bu çalışmanın amacı, çevrim akışkanının sistem verimine etkisini belirlemek ve en uygun akışkan çiftini bulmaktır. Sonuçlar, en yüksek net güç çıkışının ve en yüksek termal verimin R23+R23 çiftinden elde edildiğini göstermektedir. Ayrıca en düşük net güç çıkışının RC318+RC318 çiftinden ve en düşük termal verimin ise R218+R218 çiftinden elde edildiği gözlemlenmiştir

References

  • 1. Obafunmi, Jaiyejeje S., 2014. Thermodynamic Analysis of Organic Rankine Cycles. Eastern Mediterranean University Gazimağusa, North Cyprus.
  • 2. Quoilin, S., Orsz, M., Hemond., Lemort, V., 2011. Performance and Design Optimization of a Low-cost Solar Organic Rankine Cycle for Remote Power Generation. Solar Energy 85, 955-966.
  • 3. Becquin, G., Lehar, M., 2012. Two Algorithmsfor Reliable Estimation of Organic Rankine Performance. J. Eng. Gas Turbines Power, 134(4), 044504. DOI:10.1115/1.4004839.
  • 4. Wali, E., 2980. Optimum Working Fluids for Solar Powered Rankine Cycle Cooling ofBuildings. Solar Energy, 25(3), 235–241.
  • 5. Davidson, T.A., 1977. Design and Analysis of a 1 kW Rankine Power Cycle, Employing a Multi-vane Expander, for Use with a Low Temperature Solar Collector. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • 6. Chen, H., Goswami, D.Y., Stefanakos, E.K., 2010. A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-grade Heat. Renew Sustain Energy Rev., 14(9), 3059–3067.
  • 7. http://www.clean-energy-ideas.com/geothermal_power.html,
  • 8. Lee, D.H., 2014. Organic Rankine Cycle Power Generator. 8th Fluid Machinery Core Technology Lecture of Korea Society for Fluid Machinery, 169-179.
  • 9. Eyidogan, M., Kilic, F.C., Kaya, D., Coban, V., Cagman, S., 2016. Investigation of Organic Rankine Cycle (ORC) Technologies in Turkeyfrom the Technical and Economic Point of View. Renewable and Sustainable Energy Reviews, 58(C), 885-895.
  • 10. Lim, H.S., Choi, B.S., Park, M.R., Hwang, S.C., Park, J.Y., Seo, J., Bang, J.S., Kim, B.O., 2017. Performance Evaluation of Two-stage Turbine for the Organic Rankine Cycle System. Journal of Mechanical Science and Technology, 31(12), 5849-5855.
  • 11. Wang, Q., Wang, J., Li, T., Meng, N., 2020. Techno-economic Performance of Two-stage Series Evaporation Organic Rankine Cycle with Dual-level Heat Sources. Applied Thermal Engineering, 171(8), 115078.
  • 12.Bertrand, F.T., Papadakis, G., Lambrinos, G., Frangoudakis, A,. 2009. Fluid Selection for a Low Temperature Solar Organic Rankine Cycle. Applied Thermal Engineering, 29(11-12), 2468–2476.
  • 13. Tchanche, B.F., Papadakis, G., Lambrinos, G., Frangoudakis, A., 2008. Criteria for Working Fluids Selection in Low-temperature Solar Organic Rankine Cycles. in: Proc. Eurosun Conf., Lisbon, Portugal, 1-8
  • 14. Maizza, V., Maizza, A., 1996. Working Fluids in Non-steady Flows for Waste Energyrecovery Systems. Applied Thermal Energy, 16(7), 579–590.
  • 15.Borsukiewcz, A., Nowak, W., 2007. Comparative Analysis of Natural and Synthetic Refrigerants in Application to Low Temperature Clausius-rankinecycle. Energy, 32, 344–352.
  • 16.Bertrant, T.F., Papadakis, G., Lambrinos, G., Frangoudakis, A., 2008. Criteria for Working Fluids Selection in Low-temperature SolarOrganic Rankine Cycles. 1st International Congress on Heating. Cooling and Buildings, 1-8.
  • 17.Badr, O., Probert, S.D., O’Callaghan, P.W., 1985. Selecting a Working Fluid for a Rankine-cycle Engine. Applied Energy, 21, 1-42.
  • 18.Cengel, Y.A., Boles, M.A., 2014. Thermodynamics: An Engineering Approach. 5th Ed., McGraw-Hill Education, 554-555.
  • 19. Li, X., Liu, T., Chen, L., 2018. Thermodynamic Performance Analysis of an Improved Two-stage Organic Rankine Cycle. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
  • 20.Cengel, Y.A., Heat Transfer: A Practical Approach. 2th Ed., 690-694.
  • 21. Klein, S.A., 2003. Engineering Equation Solver-Manual. F-Chart Software, Box

The Effect of Using Different Refrigerants on System Performance in Two-Stage Organic Rankine Cycle

Year 2021, , 669 - 679, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005357

Abstract

In this study, energy analysis of a double-stage Organic Rankine Cycle (ORC) was performed using the Engineering Equation Solver program (EES). In the first and second stages, eight different organic working fluids (R134a, R410a, RC318, R407c, R22, R23, R116, and R218) were used in pairs for certain temperature limits. Choosing a suitable refrigerant or refrigerant pair is crucial for the ORC’s high thermal efficiency and net work output value. This study aims to determine the effect of working fluid on system efficiency and find out the most suitable working fluid pair. The results showed that the highest net power output and the highest thermal efficiency were obtained from the R23+R23 pair. It was also observed that the lowest net power output from the RC318+RC318 pair and the lowest thermal efficiency was obtained from the R218+R218 pair.

References

  • 1. Obafunmi, Jaiyejeje S., 2014. Thermodynamic Analysis of Organic Rankine Cycles. Eastern Mediterranean University Gazimağusa, North Cyprus.
  • 2. Quoilin, S., Orsz, M., Hemond., Lemort, V., 2011. Performance and Design Optimization of a Low-cost Solar Organic Rankine Cycle for Remote Power Generation. Solar Energy 85, 955-966.
  • 3. Becquin, G., Lehar, M., 2012. Two Algorithmsfor Reliable Estimation of Organic Rankine Performance. J. Eng. Gas Turbines Power, 134(4), 044504. DOI:10.1115/1.4004839.
  • 4. Wali, E., 2980. Optimum Working Fluids for Solar Powered Rankine Cycle Cooling ofBuildings. Solar Energy, 25(3), 235–241.
  • 5. Davidson, T.A., 1977. Design and Analysis of a 1 kW Rankine Power Cycle, Employing a Multi-vane Expander, for Use with a Low Temperature Solar Collector. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • 6. Chen, H., Goswami, D.Y., Stefanakos, E.K., 2010. A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-grade Heat. Renew Sustain Energy Rev., 14(9), 3059–3067.
  • 7. http://www.clean-energy-ideas.com/geothermal_power.html,
  • 8. Lee, D.H., 2014. Organic Rankine Cycle Power Generator. 8th Fluid Machinery Core Technology Lecture of Korea Society for Fluid Machinery, 169-179.
  • 9. Eyidogan, M., Kilic, F.C., Kaya, D., Coban, V., Cagman, S., 2016. Investigation of Organic Rankine Cycle (ORC) Technologies in Turkeyfrom the Technical and Economic Point of View. Renewable and Sustainable Energy Reviews, 58(C), 885-895.
  • 10. Lim, H.S., Choi, B.S., Park, M.R., Hwang, S.C., Park, J.Y., Seo, J., Bang, J.S., Kim, B.O., 2017. Performance Evaluation of Two-stage Turbine for the Organic Rankine Cycle System. Journal of Mechanical Science and Technology, 31(12), 5849-5855.
  • 11. Wang, Q., Wang, J., Li, T., Meng, N., 2020. Techno-economic Performance of Two-stage Series Evaporation Organic Rankine Cycle with Dual-level Heat Sources. Applied Thermal Engineering, 171(8), 115078.
  • 12.Bertrand, F.T., Papadakis, G., Lambrinos, G., Frangoudakis, A,. 2009. Fluid Selection for a Low Temperature Solar Organic Rankine Cycle. Applied Thermal Engineering, 29(11-12), 2468–2476.
  • 13. Tchanche, B.F., Papadakis, G., Lambrinos, G., Frangoudakis, A., 2008. Criteria for Working Fluids Selection in Low-temperature Solar Organic Rankine Cycles. in: Proc. Eurosun Conf., Lisbon, Portugal, 1-8
  • 14. Maizza, V., Maizza, A., 1996. Working Fluids in Non-steady Flows for Waste Energyrecovery Systems. Applied Thermal Energy, 16(7), 579–590.
  • 15.Borsukiewcz, A., Nowak, W., 2007. Comparative Analysis of Natural and Synthetic Refrigerants in Application to Low Temperature Clausius-rankinecycle. Energy, 32, 344–352.
  • 16.Bertrant, T.F., Papadakis, G., Lambrinos, G., Frangoudakis, A., 2008. Criteria for Working Fluids Selection in Low-temperature SolarOrganic Rankine Cycles. 1st International Congress on Heating. Cooling and Buildings, 1-8.
  • 17.Badr, O., Probert, S.D., O’Callaghan, P.W., 1985. Selecting a Working Fluid for a Rankine-cycle Engine. Applied Energy, 21, 1-42.
  • 18.Cengel, Y.A., Boles, M.A., 2014. Thermodynamics: An Engineering Approach. 5th Ed., McGraw-Hill Education, 554-555.
  • 19. Li, X., Liu, T., Chen, L., 2018. Thermodynamic Performance Analysis of an Improved Two-stage Organic Rankine Cycle. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
  • 20.Cengel, Y.A., Heat Transfer: A Practical Approach. 2th Ed., 690-694.
  • 21. Klein, S.A., 2003. Engineering Equation Solver-Manual. F-Chart Software, Box
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Kaplan This is me 0000-0002-4094-3180

Arif Özbek This is me 0000-0003-1287-9078

Publication Date September 30, 2021
Published in Issue Year 2021

Cite

APA Kaplan, A., & Özbek, A. (2021). The Effect of Using Different Refrigerants on System Performance in Two-Stage Organic Rankine Cycle. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 669-679. https://doi.org/10.21605/cukurovaumfd.1005357