Research Article
BibTex RIS Cite

Yarım Bant Nyquist Filtre ile Sinyallerin Ayrıştırılması ve Gürültünün Giderilmesi Üzerine Bir Araştırma

Year 2021, , 997 - 1004, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1041515

Abstract

Medikal sinyal işleme sıklıkla biyo-sinyalleri analiz etmek ve onlardan hastalıkların tespitinde kullanılır. Bölütleme, filtreleme ve gürültü giderme bu alandaki uygulama örnekleridir. Bu çalışmada sinyallerin bölütlenmesi veya ayrıştırılması incelenmiştir. İki bantlı çeyrek ayna ortogonal filtre çatısına ait yapının her bir dalı (analiz ve sentez bölümleri seri bağlıdır), aşağı ve yukarı örnekleyiciler çıkarıldığında yarım bant Nyquist filtresidir. Ayrıştırma gerçekleştirmek maksadıyla, süzgeç çatısının bir dalı, işaretin bir bileşenini bastırmak ve diğer bileşenini elde etmek için bir hedef işaretine uyarlanmıştır. Bu işlem çıkışta - hata normunu en aza indiren filtre ağırlıkları elde edilerek yapılmıştır. Bu hedefe, kapsamlı arama yöntemi kullanılarak ulaşılmıştır. Filtre performansı üç senaryo için test edilmiştir: aşağı ve yukarı örnekleyiciler ile bunlar olmadan filtreleme ve tek seviyeli ayrıştırma kullanarak dalgacık gürültü giderme. Önerilen yöntemle elde edilen filtre, Daubechies ve Symlet filtreleri ile karşılaştırılmıştır. Yaklaşım yapay olarak oluşturulan uyarılmış potansiyelini gürültüden ayırmak için çalıştırılmış ve test edilmiştir. Elde edilen sonuçlar, tasarlanan filtrenin klasik dalgacık filtrelerinden daha düşük toplam mutlak hata sağladığını göstermiştir.

References

  • 1. Gurkan, H, Hanilci, A., 2020. ECG Based Biometric Identification Method Using QRS Images and Convolution Neural Network. Pamukkale University Journal of Engineering Sciences, 26(2), 318-327.
  • 2. Rangaraj, MR., 2015. Biomedical Signal Analysis. IEEE Press Series on Biomedical Engineering, 2nd edition. Wiley-IEEE Press.
  • 3. Ergun, E., Aydemir, O., 2018. Improving Classification Accuracy of Motor Imagery EEG Signals Via Effective Epochs. Pamukkale University Journal of Engineering Sciences, 24(5), 817-823.
  • 4. Gilbert, S, Truong N., 1996. Wavelets and Filter Banks, 2nd edition. Wellesley-Cambridge Press.
  • 5. Vaidyanathan, PP., 1990. Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial. Proceedings of the IEEE 1990; 78(1), 56-93. doi: 10.1109/5.52200.
  • 6. Kamislioglu B, Karaboga N., 2019. Investigation of the Performance of the Kaiser Hamming Window in Design of QMF Bank. Pamukkale University Journal of Engineering Sciences, 25(2), 65-173.
  • 7. Alyasseri, Z.A.A., Khader, A.T., Al-Betar, M.A., Abasi, A.K., Makhadmeh, S.N., 2019. EEG Signals Denoising Using Optimal Wavelet Transform Hybridized with Efficient Metaheuristic Methods. IEEE Access 2019; 8, 10584-10605. doi:10.1109/ACCESS.2019. 2962658.
  • 8. Li, W., 2018 Wavelets for Electrocardiogram: Overview and Taxonomy. IEEE Access 2018; 7:25627-25649. doi:10.1109/ACCESS.2018. 2877793.
  • 9. Zhang, J.H., Janschek, K., Bohme, J.F., Zeng, Y.J., 2004. Multi-resolution Dyadic Wavelet Denoising Approach for Extraction of Visual Evoked Potentials in the Brain. IEEE Proceedings-Vision, Image and Signal Processing 2004. 151(3), 180-186. doi: 10.1049/ip-vis:20040315.
  • 10. Mintzer, F., 1982. On Half-band, Third-band, and Nth-band Fir Filters and Their Design. IEEE Transactions on Acoustics, Speech, and Signal Processing 1982. 30(5), 734-738. doi: 10.1109/TASSP.1982.1163950.
  • 11. Boyd, S., Vandenberghe, L., 2004. Convex Optimization. USA: Cambridge University Press.
  • 12. Donoho, DL., 1995. De-noising by Soft-thresholding. IEEE Transactions on Information Theory 1995. 41(3), 613-627. doi:13 10.1109/18.382009.

An Investigation on Decomposition of Signals and Noise Removal with a Half Band Nyquist Filter

Year 2021, , 997 - 1004, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1041515

Abstract

Medical signal processing is often used for analyzing and detecting diseases from bio-signals. Segmentation, filtering, and noise removal are application examples in this area. The segmentation or decomposition of signals is investigated in this study. Each branch of two band quadrature-mirror orthogonal filter bank structure (analysis and synthesis parts are cascaded) is a half band Nyquist filter when down-up samplers are removed. To perform partitioning, one branch of the filter bank was adapted to a component of input signal to suppress the other element and filter out the target part of the signal. This was done by obtaining the filter-tap weights, which minimize - norm of error at the output. This goal was achieved by employing the exhaustive search method. The filter performance was tested for three scenarios: filtering with and without down-up samplers and wavelet de-noising using one-level decomposition. The comparison was done with Daubechies and Symlet filters. The approach was run and tested for separating synthetically generated evoked potential from noise, and the results show that the designed filter achieves lower total absolute error than the classical wavelet filters.

References

  • 1. Gurkan, H, Hanilci, A., 2020. ECG Based Biometric Identification Method Using QRS Images and Convolution Neural Network. Pamukkale University Journal of Engineering Sciences, 26(2), 318-327.
  • 2. Rangaraj, MR., 2015. Biomedical Signal Analysis. IEEE Press Series on Biomedical Engineering, 2nd edition. Wiley-IEEE Press.
  • 3. Ergun, E., Aydemir, O., 2018. Improving Classification Accuracy of Motor Imagery EEG Signals Via Effective Epochs. Pamukkale University Journal of Engineering Sciences, 24(5), 817-823.
  • 4. Gilbert, S, Truong N., 1996. Wavelets and Filter Banks, 2nd edition. Wellesley-Cambridge Press.
  • 5. Vaidyanathan, PP., 1990. Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial. Proceedings of the IEEE 1990; 78(1), 56-93. doi: 10.1109/5.52200.
  • 6. Kamislioglu B, Karaboga N., 2019. Investigation of the Performance of the Kaiser Hamming Window in Design of QMF Bank. Pamukkale University Journal of Engineering Sciences, 25(2), 65-173.
  • 7. Alyasseri, Z.A.A., Khader, A.T., Al-Betar, M.A., Abasi, A.K., Makhadmeh, S.N., 2019. EEG Signals Denoising Using Optimal Wavelet Transform Hybridized with Efficient Metaheuristic Methods. IEEE Access 2019; 8, 10584-10605. doi:10.1109/ACCESS.2019. 2962658.
  • 8. Li, W., 2018 Wavelets for Electrocardiogram: Overview and Taxonomy. IEEE Access 2018; 7:25627-25649. doi:10.1109/ACCESS.2018. 2877793.
  • 9. Zhang, J.H., Janschek, K., Bohme, J.F., Zeng, Y.J., 2004. Multi-resolution Dyadic Wavelet Denoising Approach for Extraction of Visual Evoked Potentials in the Brain. IEEE Proceedings-Vision, Image and Signal Processing 2004. 151(3), 180-186. doi: 10.1049/ip-vis:20040315.
  • 10. Mintzer, F., 1982. On Half-band, Third-band, and Nth-band Fir Filters and Their Design. IEEE Transactions on Acoustics, Speech, and Signal Processing 1982. 30(5), 734-738. doi: 10.1109/TASSP.1982.1163950.
  • 11. Boyd, S., Vandenberghe, L., 2004. Convex Optimization. USA: Cambridge University Press.
  • 12. Donoho, DL., 1995. De-noising by Soft-thresholding. IEEE Transactions on Information Theory 1995. 41(3), 613-627. doi:13 10.1109/18.382009.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İclal Çetin Taş This is me 0000-0002-1101-9773

Sami Arıca This is me 0000-0002-3820-029X

Publication Date December 29, 2021
Published in Issue Year 2021

Cite

APA Çetin Taş, İ., & Arıca, S. (2021). An Investigation on Decomposition of Signals and Noise Removal with a Half Band Nyquist Filter. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 997-1004. https://doi.org/10.21605/cukurovaumfd.1041515