Research Article
BibTex RIS Cite

Elektrikli Araçların Kablosuz Güç Transferi Sistemi için Dairesel Bobinli Bir Transformatörün Tasarımı ve Veriminin Analizi

Year 2022, , 209 - 219, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1095053

Abstract

Kablosuz Güç Transferi (KGT), elektrik enerjisinin iletkenlere ihtiyaç duyulmadan aktarılmasıdır. KGT zamanla değişen elektrik, manyetik veya elektromanyetik alanlar kullanan teknolojilere dayanır. Bu teknolojilerde güç, kısa mesafelerde, manyetik alan ve bobinler arasındaki endüktif kuplaj yoluyla veya elektrik alan ile metal elektrotlar arasındaki kapasitif kuplaj yoluyla aktarılabilmektedir. Diğer bir ifade ile bu sistemin temel çalışma prensibi manyetik rezonansa (MR) dayanmaktadır. Endüktif kuplaja dayalı KGT sistemi, kısa mesafelerdeki elektrikli cihazların şarj edilmesi için kullanılmaktadır. Bu teknolojinin gelişmesi, endüktif kuplajlı güç aktarım sistemini elektrikli araçların şarj uygulamaları için vazgeçilmez hale getirmiştir. Bu çalışmada, elektrikli araçlardaki şarj uygulaması için KGT sisteminin verimliliğini etkileyen faktörler analiz edilmiştir. KGT sisteminde kullanılan transformatörlerin karmaşıklığı nedeniyle, karşılıklı endüktans ve kuplaj katsayısının hesaplanmasını kolaylaştırmak için Sonlu Elemanlar Yöntemi (SEY) kullanılmıştır. Bunun için bir elektrik devresini doğrusal olmayan bir eleman modeliyle birleştiren bir simülasyon modeli ANSYS yazılım paketi kullanılmıştır. Dairesel bobinli bir KGT transformatör modeli, Ansys-Maxwell yazılımında modellenmiş ve farklı koşullar altında simüle edilmiştir. Ayrıca tasarlanan KGT sisteminin performansı analiz edilmiştir.

References

  • 1. Kurs, A., Karalis, A., Moffatt, R.J., Joannopoulos, D.P., Soljacic, M., 2007. Wireless Power Transfer Via Strongly Coupled Magnetic Resonances. Science, 317(5834), 83–86.
  • 2. Cederlöf, M., 2012. Inductive Charging of Electrical Vehicles, Stockholm: KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. Master Thesis.
  • 3. Karalis, A., Joannopoulos, D.P., Soljacic, M., 2008. Efficient Wireless Non-radiative Midrange Energy Transfer. Annals of Physics, 323(1), 34–48.
  • 4. Ağçal, A., Bekiroğlu, N., Özçıra, S., 2018. Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 67-73.
  • 5. Zhang, R., Ho, C.K., 2013. MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer. IEEE Transactions on Wireless Communications, 12(5), 1989-2001.
  • 6. Miller, J.M., Onar, O.C., Chinthavali, M., 2014. Primary-side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 147-162.
  • 7. Aditya, K., Williamson, S.S., 2018. Design Guidelines to Avoid Bifurcation in a Series– series Compensated Inductive Power Transfer System. IEEE Transactions on Industrial Electronics, 66(5), 3973-3982.
  • 8. Li, S., Mi, C.C., 2015. Wireless Power Transfer for Electric Vehicle Applications. In IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 4-17.
  • 9. Lassioui, A., Fadil, H.E., Belhaj F.Z., Rachid, A., 2018. Battery Charger for Electric Vehicles Based ICPT and CPT-A State of the Art, Renewable Energies. Power Systems & Green Inclusive Economy (REPS-GIE), Casablanca, 1-6.
  • 10. Ahn, S., Hwang, C., Park, H.H. 2014. Optimized Shield Design for Reduction of EMF from Wireless Power Transfer Systems. IEICE Electronics Express, 11(2), 20130930–20130930.
  • 11. Dolara, A., Leva, Longo, Castelli-Dezza S.M.F., Mauri, M., 2017. Coil Design and Magnetic Shielding of a Resonant Wireless Power Transfer System for Electric Vehicle Battery Charging. IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 200-205.
  • 12. Kim, S., Park, H., Kim, J., Ahn, S., 2014.Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle. in IEEE Transactions on Microwave Theory and Techniques, 62(4), 1057-1066.
  • 13.Ongayo, D., Hanif, M., 2015. Comparison of Circular and Rectangular Coil Transformer Parameters for Wireless Power Transfer Based on Finite Element Analysis. IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, 1-6.
  • 14. Patil, D., McDonough, M.K., Miller, J.M., Fahimi, B., Balsara, P.T., 2018 Wireless Power Transfer for Vehicular Applications: Overview and Challenges. in IEEE Transactions on Transportation Electrification, 4(1), 3-37.
  • 15. Mude, K.N., 2015. Wireless Power Transfer for Electric Vehicle. Ph.D Theisis, University of Padova, Italy, March.
  • 16. Lassioui, A., Fadil, H.E., Rachid, A., Belhaj, F.Z., Tarkany, O., Bajit, A., 2018. Characterestics Analysis of Wireless Power Transfer System for Electric Vehicle Charging Applications. International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 1-6.
  • 17. Duarte, R.M., Felic, G.K., 2014. Analysis of the Coupling Coefficient İninductive Energy Transfer Systems. Active Passive Electron Compon, 2014, 1-6.
  • 18.Mohammad, M., Choi, S., Islam, Z., Kwak S., Baek, J., 2017. Core Design and Optimization for Better Misalignment Tolerance and Higher Range of Wireless Charging of PHEV. In IEEE Transactions on Transportation Electrification, 3(2), 445-453.

Design and Efficiency Analysis of a Circular Coil Transformer for Wireless Power Transfer System of Electric Vehicles

Year 2022, , 209 - 219, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1095053

Abstract

Wireless Power Transfer (WPT) is the transfer of electrical energy without the need for conductors. WPT relies on technologies that use time-varying electric, magnetic or electromagnetic fields. In these technologies, power can be transferred over short distances by inductive coupling between the magnetic field and coils or by capacitive coupling between the electric field and metal electrodes. In other words, the basic working principle of this system is based on magnetic resonance (MR). WPT system based on
inductive coupling is used for charging electrical devices over short distances. The development of this technology has made the inductive coupling power transmission system indispensable for charging applications of electric vehicles. In this paper, the factors affecting the efficiency of the WPT system for the charging application in electric vehicles are analyzed. Due to the complexity of the transformers used in the WPT system, the Finite Element Method (FEM) is used to facilitate the calculation of mutual inductance and coupling coefficient. For this, a simulation model ANSYS software package is used, which combines an electrical circuit with a nonlinear element model. A circular coil WPT transformer model was modeled in Ansys-Maxwell software and simulated under different conditions. In addition, the performance of the designed WPT system has been analyzed.

References

  • 1. Kurs, A., Karalis, A., Moffatt, R.J., Joannopoulos, D.P., Soljacic, M., 2007. Wireless Power Transfer Via Strongly Coupled Magnetic Resonances. Science, 317(5834), 83–86.
  • 2. Cederlöf, M., 2012. Inductive Charging of Electrical Vehicles, Stockholm: KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. Master Thesis.
  • 3. Karalis, A., Joannopoulos, D.P., Soljacic, M., 2008. Efficient Wireless Non-radiative Midrange Energy Transfer. Annals of Physics, 323(1), 34–48.
  • 4. Ağçal, A., Bekiroğlu, N., Özçıra, S., 2018. Manyetik Rezonanslı Kuplaj ile Kablosuz Enerji Transferinde Hizalanmış ve Hizalanmamış Durumların Limitlerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 67-73.
  • 5. Zhang, R., Ho, C.K., 2013. MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer. IEEE Transactions on Wireless Communications, 12(5), 1989-2001.
  • 6. Miller, J.M., Onar, O.C., Chinthavali, M., 2014. Primary-side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 147-162.
  • 7. Aditya, K., Williamson, S.S., 2018. Design Guidelines to Avoid Bifurcation in a Series– series Compensated Inductive Power Transfer System. IEEE Transactions on Industrial Electronics, 66(5), 3973-3982.
  • 8. Li, S., Mi, C.C., 2015. Wireless Power Transfer for Electric Vehicle Applications. In IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(1), 4-17.
  • 9. Lassioui, A., Fadil, H.E., Belhaj F.Z., Rachid, A., 2018. Battery Charger for Electric Vehicles Based ICPT and CPT-A State of the Art, Renewable Energies. Power Systems & Green Inclusive Economy (REPS-GIE), Casablanca, 1-6.
  • 10. Ahn, S., Hwang, C., Park, H.H. 2014. Optimized Shield Design for Reduction of EMF from Wireless Power Transfer Systems. IEICE Electronics Express, 11(2), 20130930–20130930.
  • 11. Dolara, A., Leva, Longo, Castelli-Dezza S.M.F., Mauri, M., 2017. Coil Design and Magnetic Shielding of a Resonant Wireless Power Transfer System for Electric Vehicle Battery Charging. IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 200-205.
  • 12. Kim, S., Park, H., Kim, J., Ahn, S., 2014.Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle. in IEEE Transactions on Microwave Theory and Techniques, 62(4), 1057-1066.
  • 13.Ongayo, D., Hanif, M., 2015. Comparison of Circular and Rectangular Coil Transformer Parameters for Wireless Power Transfer Based on Finite Element Analysis. IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, 1-6.
  • 14. Patil, D., McDonough, M.K., Miller, J.M., Fahimi, B., Balsara, P.T., 2018 Wireless Power Transfer for Vehicular Applications: Overview and Challenges. in IEEE Transactions on Transportation Electrification, 4(1), 3-37.
  • 15. Mude, K.N., 2015. Wireless Power Transfer for Electric Vehicle. Ph.D Theisis, University of Padova, Italy, March.
  • 16. Lassioui, A., Fadil, H.E., Rachid, A., Belhaj, F.Z., Tarkany, O., Bajit, A., 2018. Characterestics Analysis of Wireless Power Transfer System for Electric Vehicle Charging Applications. International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 1-6.
  • 17. Duarte, R.M., Felic, G.K., 2014. Analysis of the Coupling Coefficient İninductive Energy Transfer Systems. Active Passive Electron Compon, 2014, 1-6.
  • 18.Mohammad, M., Choi, S., Islam, Z., Kwak S., Baek, J., 2017. Core Design and Optimization for Better Misalignment Tolerance and Higher Range of Wireless Charging of PHEV. In IEEE Transactions on Transportation Electrification, 3(2), 445-453.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yıldırım Özüpak This is me 0000-0001-8461-8702

Publication Date March 29, 2022
Published in Issue Year 2022

Cite

APA Özüpak, Y. (2022). Elektrikli Araçların Kablosuz Güç Transferi Sistemi için Dairesel Bobinli Bir Transformatörün Tasarımı ve Veriminin Analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 209-219. https://doi.org/10.21605/cukurovaumfd.1095053