Research Article
BibTex RIS Cite

Fonksiyonel Derecelenmiş Malzeme ve Değişken Kesitli Silindirik Olmayan Helisel Çubukların Titreşimi

Year 2022, , 283 - 292, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1095097

Abstract

Bu çalışmada fonksiyonel derecelenmiş malzemeli değişken kesite sahip silindirik olmayan helisel çubukların serbest titreşimi incelenmiştir. Malzeme ve kesit değişiminin çubuk ekseni boyunca olduğu varsayımı kullanılmıştır. Eksenel ve kayma deformasyonlarını içeren çubuğun serbest titreşimini idare eden diferansiyel denklemler Timoshenko kiriş teorisi kullanılarak elde edilmiştir. Ardından taşıma matrisi ve rijitlik matrisi yöntemleri bir arada kullanılarak diferansiyel denklemler sayısal olarak çözülmüştür. Malzeme değişim parametresi (βmat), kesit değişim parametresi (βsec) silindirin kenar ve orta kısımlarının yarıçap oranının R2⁄R1 hiperbol ve varil tipi geometriye sahip silindirik olmayan helisel çubukların serbest titreşimine etkisi araştırılmıştır. Literatürde bulunan örnek ve ANSYS paket programı kullanılarak elde edilen sonuçlar karşılaştırılmalı olarak verilmiştir.

References

  • 1. Epstein, I., 1947. The Motion of a Conical Coil Spring. J. Appl. Phys., 18(4), 368–374, doi:10.1063/1.1697660.
  • 2. Massoud, M. P., 1965. Vectorial Derivation of the Equations for Small Vibrations of Twisted Curved Beams. J. Appl. Mech., 32(2), 439–440, doi: 10.1115/1.3625823.
  • 3. Mottershead, J.E., 1980. Finite Elements for Dynamical Analysis of Helical Rods. Int. J. Mech. Sci., 22(5) 267–283, doi: 10.1016/0020- 7403(80)90028-4.
  • 4. Nagaya, K., Takeda, S., Nakata, Y., 1986. Free Vibration of Coil Springs of Arbitrary Shape. Int. J. Numer. Methods Eng., 23(6), 1081–1099, doi: 10.1002/nme.1620230607.
  • 5. Yildirim, V., İnce, N., 1997. Natural Frequencies of Helical Springs of Arbitrary Shape. J. Sound Vib., 204(2) 311–329, doi:10.1006/jsvi.1997.0940.
  • 6. Yildirim, V., 1998. A Parametric Study on the Free Vibration of Non-Cylindrical Helical Springs. J. Appl. Mech. Trans. ASME, 65(1), 157–163, doi: 10.1115/1.2789019.
  • 7. Yildirim, V., 2002. Expressıons for Predicting Fundamental Natural Frequencies of Non- Cylindrical Helical Springs. J. Sound Vib., 252(3), 479–491, doi: 10.1006/jsvi.2001.4005.
  • 8. Busool, W., Eisenberger, M., 2002. Free Vibration of Helicoidal Beams of Arbitrary Shape and Variable Cross Section. J. Vib. Acoust. Trans. ASME, 124(3), 397–409, doi:10.1115/1.1468870.
  • 9. Çalım, F.F., 2003. Viskoelastik, Anizotropik Eğri Eksenli Uzaysal Çubuk Sistemlerin Dinamik Analizi. ÇÜ Fen Bilimleri Enstitüsü, Doktora Tezi, Adana, 160.
  • 10. Temel, B., Calim, F.F., 2003. Forced Vibration of Cylindrical Helical Rods Subjected to Impulsive Loads. J. Appl. Mech., 70(2), 281–291, doi: 10.1115/1.1554413.
  • 11. Girgin, K., 2006. Free Vibration Analysis of Non-cylindrical Helices with, Variable Crosssection by Using Mixed FEM. J. Sound Vib., 297(3–5), 931–945, doi: 10.1016/j.jsv.2006.05.001.
  • 12. Calim, F.F., 2009. Dynamic Analysis of Composite Coil Springs of Arbitrary Shape. Compos. Part B Eng., 40(8), 741–757, doi:10.1016/j.compositesb.2009.04.017.
  • 13. Calim, F.F., 2009. Forced Vibration of Helical Rods of Arbitrary Shape. Mech. Res. Commun., 36(8), 882–891, doi: 10.1016/j.mechrescom.2009.07.007.
  • 14. Yu, A.M., Hao, Y., 2012. Improved Riccati Transfer Matrix Method for Free Vibration of Non-cylindrical Helical Springs Including Warping, Shock Vib., 19(6), 1167–1180, doi:10.1155/2012/713874.
  • 15. Yu, A.M., Hao, Y., 2013. Warping Effect in Free Vibration Analysis of Unidirectional Composite Non-cylindrical Helical Springs. Meccanica, 48(10), 2453–2465, doi:10.1007/s11012-013-9760-5.
  • 16. Yu, A.M., Hao, Y., 2013. Effect of Warping on Natural Frequencies of Symmetrical Cross-ply Laminated Composite Non-cylindrical HelicalSprings. Int. J. Mech. Sci., 74, 65–72, doi:10.1016/j.ijmecsci.2013.04.010.
  • 17. Kacar, I., Yildirim, V., 2016. Free Vibration/buckling Analyses of Noncylindrical Initially Compressed Helical Composite Springs. Mech. Based Des. Struct. Mach., 44(4), 340–353, doi: 10.1080/15397734.2015.1066687.
  • 18. Eratli, N., Yilmaz, M., Darilmaz, K., Omurtag, M.H., 2016. Dynamic Analysis of Helicoidal Bars with Non-circular Cross-sections via Mixed FEM. Struct. Eng. Mech., 57(2), 221–238, doi: 10.12989/sem.2016.57.2.221.
  • 19. Ermis, M., Eratlı, N., Argeso, H., Kutlu, A., Omurtag, M.H., 2016. Parametric Analysis of Viscoelastic Hyperboloidal Helical Rod. Adv. Struct. Eng., 19(9), 1420–1434, doi:10.1177/1369433216643584.
  • 20. Ermis, M., Omurtag, M.H., 2017. Static and Dynamic Analysis of Conical Helices Based on Exact Geometry via Mixed FEM. Int. J. Mech. Sci., 131–132, 296–304, doi: 10.1016/j.ijmecsci.2017.07.010.
  • 21. Aribas, U.N., Ermis, M., Eratli, N., Omurtag, M.H., 2019. The Static and Dynamic Analyses of Warping Included Composite Exact Conical Helix by Mixed FEM. Compos. Part B Eng., 160, 285–297, doi: 10.1016/j.compositesb.2018.10.018.
  • 22.Aribas, U.N., Omurtag, M.H., 2019. The Static Response of Sandwich Exact Conical Helices via MFEM. J. Struct. Eng. Appl. Mech., 2(4), 153–163, doi: 10.31462/jseam.2019.04153163.
  • 23. Calim, F.F., Cuma, Y.C., 2020. Vibration Analysis of Nonuniform Hyperboloidal and Barrel Helices Made of Functionally Graded Material. Mech. Based Des. Struct. Mach., 1– 15, doi: 10.1080/15397734.2020.1822181.
  • 24. Cuma, Y.C., Calim, F.F., 2021. Free Vibration Analysis of Functionally Graded Cylindrical Helices with Variable Cross-section. J. Sound Vib., 494, 115856, doi: 10.1016/j.jsv.2020.11585
  • 25. İnan, M., 1964. Elastomekanikte Başlangıç Değerleri Metodu ve Taşıma Matrisi. İTÜ.

Vibration Analysis of Non-Cylindrical Helical Rods with Functionally Graded Materials and Variable Cross-sectional Area

Year 2022, , 283 - 292, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1095097

Abstract

In this study, free vibration of non-cylindrical helical rods of variable cross-section with functionallygraded material was investigated. Material and cross-section variation are assumed to be along the rodaxis. The differential equations governing the free vibration of the rod including axial and shear deformations are obtained by using the Timoshenko’s beam theory. Then, the obtained differential equations are solved numerically by using the transfer matrix and stiffness matrix methods simultaneously. The effect of material variation parameter (βmat), cross section variation parameter (βsec), ratio of the edge and middle point radiuses of the cylinder (R2⁄R1) on the free vibration behaviour of hyperboloidal and barrel type non-cylindrical helical rods were investigated. The results obtained from the present study are compared with the example available in the literature and the ANSYS package program.

References

  • 1. Epstein, I., 1947. The Motion of a Conical Coil Spring. J. Appl. Phys., 18(4), 368–374, doi:10.1063/1.1697660.
  • 2. Massoud, M. P., 1965. Vectorial Derivation of the Equations for Small Vibrations of Twisted Curved Beams. J. Appl. Mech., 32(2), 439–440, doi: 10.1115/1.3625823.
  • 3. Mottershead, J.E., 1980. Finite Elements for Dynamical Analysis of Helical Rods. Int. J. Mech. Sci., 22(5) 267–283, doi: 10.1016/0020- 7403(80)90028-4.
  • 4. Nagaya, K., Takeda, S., Nakata, Y., 1986. Free Vibration of Coil Springs of Arbitrary Shape. Int. J. Numer. Methods Eng., 23(6), 1081–1099, doi: 10.1002/nme.1620230607.
  • 5. Yildirim, V., İnce, N., 1997. Natural Frequencies of Helical Springs of Arbitrary Shape. J. Sound Vib., 204(2) 311–329, doi:10.1006/jsvi.1997.0940.
  • 6. Yildirim, V., 1998. A Parametric Study on the Free Vibration of Non-Cylindrical Helical Springs. J. Appl. Mech. Trans. ASME, 65(1), 157–163, doi: 10.1115/1.2789019.
  • 7. Yildirim, V., 2002. Expressıons for Predicting Fundamental Natural Frequencies of Non- Cylindrical Helical Springs. J. Sound Vib., 252(3), 479–491, doi: 10.1006/jsvi.2001.4005.
  • 8. Busool, W., Eisenberger, M., 2002. Free Vibration of Helicoidal Beams of Arbitrary Shape and Variable Cross Section. J. Vib. Acoust. Trans. ASME, 124(3), 397–409, doi:10.1115/1.1468870.
  • 9. Çalım, F.F., 2003. Viskoelastik, Anizotropik Eğri Eksenli Uzaysal Çubuk Sistemlerin Dinamik Analizi. ÇÜ Fen Bilimleri Enstitüsü, Doktora Tezi, Adana, 160.
  • 10. Temel, B., Calim, F.F., 2003. Forced Vibration of Cylindrical Helical Rods Subjected to Impulsive Loads. J. Appl. Mech., 70(2), 281–291, doi: 10.1115/1.1554413.
  • 11. Girgin, K., 2006. Free Vibration Analysis of Non-cylindrical Helices with, Variable Crosssection by Using Mixed FEM. J. Sound Vib., 297(3–5), 931–945, doi: 10.1016/j.jsv.2006.05.001.
  • 12. Calim, F.F., 2009. Dynamic Analysis of Composite Coil Springs of Arbitrary Shape. Compos. Part B Eng., 40(8), 741–757, doi:10.1016/j.compositesb.2009.04.017.
  • 13. Calim, F.F., 2009. Forced Vibration of Helical Rods of Arbitrary Shape. Mech. Res. Commun., 36(8), 882–891, doi: 10.1016/j.mechrescom.2009.07.007.
  • 14. Yu, A.M., Hao, Y., 2012. Improved Riccati Transfer Matrix Method for Free Vibration of Non-cylindrical Helical Springs Including Warping, Shock Vib., 19(6), 1167–1180, doi:10.1155/2012/713874.
  • 15. Yu, A.M., Hao, Y., 2013. Warping Effect in Free Vibration Analysis of Unidirectional Composite Non-cylindrical Helical Springs. Meccanica, 48(10), 2453–2465, doi:10.1007/s11012-013-9760-5.
  • 16. Yu, A.M., Hao, Y., 2013. Effect of Warping on Natural Frequencies of Symmetrical Cross-ply Laminated Composite Non-cylindrical HelicalSprings. Int. J. Mech. Sci., 74, 65–72, doi:10.1016/j.ijmecsci.2013.04.010.
  • 17. Kacar, I., Yildirim, V., 2016. Free Vibration/buckling Analyses of Noncylindrical Initially Compressed Helical Composite Springs. Mech. Based Des. Struct. Mach., 44(4), 340–353, doi: 10.1080/15397734.2015.1066687.
  • 18. Eratli, N., Yilmaz, M., Darilmaz, K., Omurtag, M.H., 2016. Dynamic Analysis of Helicoidal Bars with Non-circular Cross-sections via Mixed FEM. Struct. Eng. Mech., 57(2), 221–238, doi: 10.12989/sem.2016.57.2.221.
  • 19. Ermis, M., Eratlı, N., Argeso, H., Kutlu, A., Omurtag, M.H., 2016. Parametric Analysis of Viscoelastic Hyperboloidal Helical Rod. Adv. Struct. Eng., 19(9), 1420–1434, doi:10.1177/1369433216643584.
  • 20. Ermis, M., Omurtag, M.H., 2017. Static and Dynamic Analysis of Conical Helices Based on Exact Geometry via Mixed FEM. Int. J. Mech. Sci., 131–132, 296–304, doi: 10.1016/j.ijmecsci.2017.07.010.
  • 21. Aribas, U.N., Ermis, M., Eratli, N., Omurtag, M.H., 2019. The Static and Dynamic Analyses of Warping Included Composite Exact Conical Helix by Mixed FEM. Compos. Part B Eng., 160, 285–297, doi: 10.1016/j.compositesb.2018.10.018.
  • 22.Aribas, U.N., Omurtag, M.H., 2019. The Static Response of Sandwich Exact Conical Helices via MFEM. J. Struct. Eng. Appl. Mech., 2(4), 153–163, doi: 10.31462/jseam.2019.04153163.
  • 23. Calim, F.F., Cuma, Y.C., 2020. Vibration Analysis of Nonuniform Hyperboloidal and Barrel Helices Made of Functionally Graded Material. Mech. Based Des. Struct. Mach., 1– 15, doi: 10.1080/15397734.2020.1822181.
  • 24. Cuma, Y.C., Calim, F.F., 2021. Free Vibration Analysis of Functionally Graded Cylindrical Helices with Variable Cross-section. J. Sound Vib., 494, 115856, doi: 10.1016/j.jsv.2020.11585
  • 25. İnan, M., 1964. Elastomekanikte Başlangıç Değerleri Metodu ve Taşıma Matrisi. İTÜ.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yavuz Çetin Cuma This is me 0000-0003-1530-8211

Faruk Fırat Çalım This is me 0000-0002-7493-3386

Publication Date March 29, 2022
Published in Issue Year 2022

Cite

APA Cuma, Y. Ç., & Çalım, F. F. (2022). Fonksiyonel Derecelenmiş Malzeme ve Değişken Kesitli Silindirik Olmayan Helisel Çubukların Titreşimi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 283-292. https://doi.org/10.21605/cukurovaumfd.1095097