Research Article
BibTex RIS Cite

Üç Boyutlu Baskı ile Farklı Katman Yüksekliklerinde Üretilmiş PLA, PET-G ve ABS Parçaların Boyutsal Doğruluğu Üzerine Bir Araştırma

Year 2022, , 449 - 458, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146401

Abstract

Bu çalışmada, PLA, PET-G ve ABS'den 3D baskılı çekme testi numunelerinin boyutsal doğruluğuna filament tipi ve katman yüksekliğinin etkisi derinlemesine araştırılmıştır. Eriyik filament üretimi teknolojisine dayalı olarak, çeşitli katman yüksekliklerinde (0,2 mm, 0,3 mm ve 0,4 mm) çekme test numuneleri üretilirken, meme ve bina platform sıcaklığı dışındaki diğer parametreler sabit tutulmuştur. Üretilen test numunelerinin uzunluk, genişlik ve yükseklik değerleri ölçülerek, elde edilen sonuçlar tasarım boyutları ile karşılaştırılarak her bir numunenin boyutsal doğruluğu gözlemlenmiştir. Ayrıca, nihai yüzey kalitelerini incelemek için numuneler üzerinde yüzey pürüzlülük ölçümleri yapılmıştır. Boyutsal ölçümlerden en doğru sonuçların PET-G (uzunlukta ve yükseklikte) ve PLA (genişlikte) numuneleri için kaydedildiği görüldü. Ayrıca PLA numunelerinde diğer filamentlere kıyasla en iyi yüzey kalitesi elde edilmiştir.

References

  • 1. Demir, H., Gündüz, S., 2009. The Effects of Aging on Machinability of 6061 Aluminum Alloy. Materials and Design, 30(5), 1480–1483.
  • 2. Ghosh, S., Kain, V., 2010. Microstructural Changes in AISI 304L Stainless Steel Due to Surface Machining: Effect on Its Susceptibility to Chloride Stress Corrosion Cracking. Journal of Nuclear Materials, 403(1-3), 62-67.
  • 3. Yang, J., Yang, W., Chen, W., Tao, X., 2020. An Elegant Coupling: Freeze-casting and Versatile Polymer Composites. Progress in Polymer Science, 109, 101289.
  • 4. Attia, U.M., Marson, S., Alcock, J.R., 2009. Micro-injection Moulding of Polymer Microfluidic Devices. Microfluids and Nanofluids, 7.
  • 5. Bolat, Ç., Akgün, İ.C., Göksenli, A., 2020. On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science, 4(3), 131-141.
  • 6. Ergene, B., Bolat, Ç., 2019. A Review on the Recent Investigation Trends in Abrasive Waterjet Cutting and Turning of Hybrid Composites. Sigma Journal of Engineering and Natural Sciences, 37(3), 989-1016.
  • 7. Yalçın, B., Ergene, B., 2018. Analyzing the Effect of Crack in Different Hybrid Composite Materials on Mechanical Behaviors. Pamukkale University Journal of Engineering Sciences, 24(4), 616-625.
  • 8. Novák, P., 2020. Advanced Powder Metallurgy Technologies. Materials, 13, 1742.
  • 9. Ergene, B., 2022. Simulation of the Production of Inconel 718 and Ti6Al4V Biomedical Parts with Different Relative Densities by Selective Laser Melting (SLM) Method. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1), 469-484.
  • 10. Ergene, B., Şekeroğlu, İ., Bolat, Ç., Yalçın, B., 2021. An Experimental Investigation on Mechanical Performances of 3D Printed Lightweight ABS Pipes with Different Cellular Wall Thickness. Journal of Mechanical Engineering and Sciences, 15(4), 8169-8177.
  • 11. Kamer, M.S., Doğan, O., Temiz, Ş., Yaykaşlı, H., 2021. Investigation of the Mechanical Properties of Flexural Test Samples Produced Using Different Printing Parameters with a 3D Printer. Çukurova University Journal of the Faculty of Engineering, 36(3), 835-846.
  • 12. Kumar, P., Ahuja, I.P.S., Singh, R., 2012. Application of Fusion Deposition Modelling for Rapid Investment Casting- A Review. International Journal of Materials Engineering Innovation, 3(1), 204-227.
  • 13. Ingole, D.S., Kuthe, A.M., Thakare, S.B., Talankar, A.S., 2009. Rapid Prototyping- A Technology Transfer Approach for Development of Rapid Tooling. Rapid Prototyping Journal, 15(1), 280-290.
  • 14. Venkataraman, N., Rangarajan, S., Matthewson, M.J., Harper, B., Safari, A., Danforth, S.C., Wu, G., Langrana, N., Guceri, S., Yardimci, A., 2000. Feedstock Material Property- Process Relationships Infused Deposition of Ceramics (FDC). Rapid Prototyping Journal, 6(1), 244-252.
  • 15. Wohlers, T.T., 2011, Wohlers Report: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, CO.
  • 16. Karabeyoğlu, S.S., Ekşi, O., Yaman, P., Küçükyıldırım, B.O., 2021. Effects of Infill Pattern and Density on Wear Performance of FDM-printed Acrylonitrile-butadiene-styrene Parts. Journal of Polymer Engineering, 41(10), 854-862.
  • 17. Ehrmann, G., Ehrmann, A., 2021. Investigation of the Shape-Memory Properties of 3D Printed PLA Structures with Different Infills. Polymers, 13, 164.
  • 18. Hanon, M.M., Zsidai, L., Ma, Q., 2021. Accuracy Investigation of 3D Printed PLA with Various Process Parameters and Different Colors. Materials Today: Proceedings, 42(5), 3089-3096.
  • 19. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., 2009. Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Materials and Design, 30(10), 4243-4252.
  • 20. Hyndhavi, D., Babu, G.R., Murthy, S.B., 2018. Investigation of Dimensional Accuracy and Material Performance in Fused Deposition Modeling. Materials Today: Proceedings, 5(11), 23508–23517.
  • 21. Mohamed, O.A., Masood, S.H., Bhowmik, J.L., 2015. Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects. Advances in Manufacturing, 3, 42–53.
  • 22. Maurya, N.K., Rastogi, V., Singh, P., 2020. Investigation of Dimensional Accuracy and International Tolerance Grades of 3D Printed Polycarbonate Parts. Materials Today: Proceedings, 25(4), 537-543.
  • 23. Nidagundi, V., Keshavamurthy, R., Prakash, C., 2015. Studies on Parametric Optimization for Fused Deposition Modelling Process.
  • Materials Today: Proceedings, 2(4–5), 1691-1699.
  • 24. Anusree, T., Anjan, R., Sivadasan, M., John, T., 2016. Process Parameter Optimization of Fused Deposition Modeling for Helical Surfaces Using Grey Relational Analysis. Materials Science Forum, 879, 861-866.
  • 25. Wang, C.C., Lin, T.W., Hu, S.S., 2007. Optimizing the Rapid Prototyping Process by Integrating the Taguchi Method with the Gray Relational Analysis. Rapid Prototyping Journal, 13(5), 304-315.
  • 26. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., 2010. Grey Taguchi Method for Improving Dimensional Accuracy of FDM Process. AIMS International Conference on Value-Based Management, Haridwar, 608-613.
  • 27. Alafaghani, A.A., Qattawi, A., Alrawi, B., Guzman, A., 2017. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-manufacturing Approach. Procedia Manufacturing, 10, 791-803.
  • 28. Gonabadi, H., Yadav, A., Bull, S.J., 2020. The Effect of Processing Parameters on the Mechanical Characteristics of PLA Produced by a 3D Fff Printer. International Journal of Advanced Manufacturing Technology, 111, 695-709.
  • 29. Zharylkassyn, B, Perveen, A., Talamona, D., 2021. Effect of Process Parameters and Materials on the Dimensional Accuracy of FDM Parts. Materials Today: Proceedings, 44(1), 1307-1311.
  • 30. Alsoufi, M.S., Elsayed, A.E., 2018. Surface Roughness Quality and Dimensional Accuracy-A Comprehensive Analysis of 100% Infill Printed Parts Fabricated by a Personal/Desktop Cost-effective FDM 3D Printer. Materials Sciences and Applications, 9(1), 11-40.
  • 31. Haque, M.E., Banerjee, D., Mishra, S.B., Nanda, B.K., 2019. A Numerical Approach to Measure the Surface Roughness of FDM Build Part. Materials Today: Proceedings, 18(7), 5523-5529.

An Investigation on Dimensional Accuracy of 3D Printed PLA, PET-G and ABS Samples with Different Layer Heights

Year 2022, , 449 - 458, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146401

Abstract

In this study, the effect of filament type and layer height on the dimensional accuracy of the 3D printed tensile test samples from PLA, PET-G, and ABS was investigated in depth. Based on the fused filament fabrication (FFF) technology, tensile test samples were produced with various layer heights (0.2 mm, 0.3 mm, and 0.4 mm) while the other printing parameters were kept constant, except for nozzle and building platform temperature. Length, width, and height values of the produced test samples were measured, and obtained results were compared with design dimensions to observe the dimensional accuracy of each sample. Also, surface roughness measurements were performed on the samples to examine their final surface quality. From dimensional measurements, it was seen that the most accurate results were recorded for PET-G (in length and height) and PLA (in width) samples. Furthermore, the best surface quality was attained in PLA samples compared to other filaments.

References

  • 1. Demir, H., Gündüz, S., 2009. The Effects of Aging on Machinability of 6061 Aluminum Alloy. Materials and Design, 30(5), 1480–1483.
  • 2. Ghosh, S., Kain, V., 2010. Microstructural Changes in AISI 304L Stainless Steel Due to Surface Machining: Effect on Its Susceptibility to Chloride Stress Corrosion Cracking. Journal of Nuclear Materials, 403(1-3), 62-67.
  • 3. Yang, J., Yang, W., Chen, W., Tao, X., 2020. An Elegant Coupling: Freeze-casting and Versatile Polymer Composites. Progress in Polymer Science, 109, 101289.
  • 4. Attia, U.M., Marson, S., Alcock, J.R., 2009. Micro-injection Moulding of Polymer Microfluidic Devices. Microfluids and Nanofluids, 7.
  • 5. Bolat, Ç., Akgün, İ.C., Göksenli, A., 2020. On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science, 4(3), 131-141.
  • 6. Ergene, B., Bolat, Ç., 2019. A Review on the Recent Investigation Trends in Abrasive Waterjet Cutting and Turning of Hybrid Composites. Sigma Journal of Engineering and Natural Sciences, 37(3), 989-1016.
  • 7. Yalçın, B., Ergene, B., 2018. Analyzing the Effect of Crack in Different Hybrid Composite Materials on Mechanical Behaviors. Pamukkale University Journal of Engineering Sciences, 24(4), 616-625.
  • 8. Novák, P., 2020. Advanced Powder Metallurgy Technologies. Materials, 13, 1742.
  • 9. Ergene, B., 2022. Simulation of the Production of Inconel 718 and Ti6Al4V Biomedical Parts with Different Relative Densities by Selective Laser Melting (SLM) Method. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1), 469-484.
  • 10. Ergene, B., Şekeroğlu, İ., Bolat, Ç., Yalçın, B., 2021. An Experimental Investigation on Mechanical Performances of 3D Printed Lightweight ABS Pipes with Different Cellular Wall Thickness. Journal of Mechanical Engineering and Sciences, 15(4), 8169-8177.
  • 11. Kamer, M.S., Doğan, O., Temiz, Ş., Yaykaşlı, H., 2021. Investigation of the Mechanical Properties of Flexural Test Samples Produced Using Different Printing Parameters with a 3D Printer. Çukurova University Journal of the Faculty of Engineering, 36(3), 835-846.
  • 12. Kumar, P., Ahuja, I.P.S., Singh, R., 2012. Application of Fusion Deposition Modelling for Rapid Investment Casting- A Review. International Journal of Materials Engineering Innovation, 3(1), 204-227.
  • 13. Ingole, D.S., Kuthe, A.M., Thakare, S.B., Talankar, A.S., 2009. Rapid Prototyping- A Technology Transfer Approach for Development of Rapid Tooling. Rapid Prototyping Journal, 15(1), 280-290.
  • 14. Venkataraman, N., Rangarajan, S., Matthewson, M.J., Harper, B., Safari, A., Danforth, S.C., Wu, G., Langrana, N., Guceri, S., Yardimci, A., 2000. Feedstock Material Property- Process Relationships Infused Deposition of Ceramics (FDC). Rapid Prototyping Journal, 6(1), 244-252.
  • 15. Wohlers, T.T., 2011, Wohlers Report: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, CO.
  • 16. Karabeyoğlu, S.S., Ekşi, O., Yaman, P., Küçükyıldırım, B.O., 2021. Effects of Infill Pattern and Density on Wear Performance of FDM-printed Acrylonitrile-butadiene-styrene Parts. Journal of Polymer Engineering, 41(10), 854-862.
  • 17. Ehrmann, G., Ehrmann, A., 2021. Investigation of the Shape-Memory Properties of 3D Printed PLA Structures with Different Infills. Polymers, 13, 164.
  • 18. Hanon, M.M., Zsidai, L., Ma, Q., 2021. Accuracy Investigation of 3D Printed PLA with Various Process Parameters and Different Colors. Materials Today: Proceedings, 42(5), 3089-3096.
  • 19. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., 2009. Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Materials and Design, 30(10), 4243-4252.
  • 20. Hyndhavi, D., Babu, G.R., Murthy, S.B., 2018. Investigation of Dimensional Accuracy and Material Performance in Fused Deposition Modeling. Materials Today: Proceedings, 5(11), 23508–23517.
  • 21. Mohamed, O.A., Masood, S.H., Bhowmik, J.L., 2015. Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects. Advances in Manufacturing, 3, 42–53.
  • 22. Maurya, N.K., Rastogi, V., Singh, P., 2020. Investigation of Dimensional Accuracy and International Tolerance Grades of 3D Printed Polycarbonate Parts. Materials Today: Proceedings, 25(4), 537-543.
  • 23. Nidagundi, V., Keshavamurthy, R., Prakash, C., 2015. Studies on Parametric Optimization for Fused Deposition Modelling Process.
  • Materials Today: Proceedings, 2(4–5), 1691-1699.
  • 24. Anusree, T., Anjan, R., Sivadasan, M., John, T., 2016. Process Parameter Optimization of Fused Deposition Modeling for Helical Surfaces Using Grey Relational Analysis. Materials Science Forum, 879, 861-866.
  • 25. Wang, C.C., Lin, T.W., Hu, S.S., 2007. Optimizing the Rapid Prototyping Process by Integrating the Taguchi Method with the Gray Relational Analysis. Rapid Prototyping Journal, 13(5), 304-315.
  • 26. Sood, A.K., Ohdar, R.K., Mahapatra, S.S., 2010. Grey Taguchi Method for Improving Dimensional Accuracy of FDM Process. AIMS International Conference on Value-Based Management, Haridwar, 608-613.
  • 27. Alafaghani, A.A., Qattawi, A., Alrawi, B., Guzman, A., 2017. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-manufacturing Approach. Procedia Manufacturing, 10, 791-803.
  • 28. Gonabadi, H., Yadav, A., Bull, S.J., 2020. The Effect of Processing Parameters on the Mechanical Characteristics of PLA Produced by a 3D Fff Printer. International Journal of Advanced Manufacturing Technology, 111, 695-709.
  • 29. Zharylkassyn, B, Perveen, A., Talamona, D., 2021. Effect of Process Parameters and Materials on the Dimensional Accuracy of FDM Parts. Materials Today: Proceedings, 44(1), 1307-1311.
  • 30. Alsoufi, M.S., Elsayed, A.E., 2018. Surface Roughness Quality and Dimensional Accuracy-A Comprehensive Analysis of 100% Infill Printed Parts Fabricated by a Personal/Desktop Cost-effective FDM 3D Printer. Materials Sciences and Applications, 9(1), 11-40.
  • 31. Haque, M.E., Banerjee, D., Mishra, S.B., Nanda, B.K., 2019. A Numerical Approach to Measure the Surface Roughness of FDM Build Part. Materials Today: Proceedings, 18(7), 5523-5529.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Çağın Bolat This is me 0000-0002-4356-4696

Berkat Ergene This is me 0000-0001-6145-1970

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Bolat, Ç., & Ergene, B. (2022). An Investigation on Dimensional Accuracy of 3D Printed PLA, PET-G and ABS Samples with Different Layer Heights. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 449-458. https://doi.org/10.21605/cukurovaumfd.1146401

Cited By