Research Article
BibTex RIS Cite

Otokodlayıcılar Kullanarak Uzaktan Algılama Görüntülerindeki Eksik Verilerin Yeniden Yapılandırılması

Year 2022, , 853 - 862, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230776

Abstract

Uzaktan algılama çalışmalarında uydu görüntülerindeki eksik verilerin yeniden yapılandırılması, veri kullanılabilirliğini artırmak ve analiz süreçlerini kolaylaştırmak açısından büyük önem taşımaktadır. Bu çalışmada, bu problemi çözmek için otokodlayıcı adı verilen Yapay Sinir Ağı (YSA) modeli kullanılmıştır. Çalışmanın amacı, büyük oranda eksik veri içeren ve bu nedenle interpolasyon gibi klasik yöntemlerle yüksek doğrulukla yeniden yapılandırılması zor olan uydu görüntülerini başarılı bir şekilde yeniden yapılandıracak bir YSA modelinin geliştirilmesidir. Model, Orta Çözünürlüklü Görüntüleme Spektroradyometresi (MODIS) sensörleri ile elde edilen 1-km çözünürlüğe sahip günlük (MYD11A1) yüzey sıcaklığı verileri üzerinde test edilmiştir. Çalışma alanı Türkiye’nin güneyinde yer alan, Antalya ilinin kuzeyi ile Burdur ve Isparta il sınırları içerisinde bulunan bir bölgeyi kapsamaktadır. 2017-2020 tarih aralığına ait 306 veri üzerinde yapılan çalışma sonucunda modelin %70 ve üzerinde eksik bilgi içeren verileri 1,79 Ortalama Mutlak Hata (OMH) değeri ile tamamlayabildiği görülmüştür.

References

  • ⦁ Salmon, B.P., Olivier, J.C., Wessels, K.J., Kleynhans, W., Van Den Bergh, F., Steenkamp, K.C., 2010. Unsupervised Land Cover Change Detection: Meaningful Sequential Time Series Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 327-335.
  • ⦁ Rahman, A., Aggarwal, S.P., Netzband, M., Fazal, S., 2010. Monitoring Urban Sprawl Using Remote Sensing and GIS Techniques of A Fast Growing Urban Centre, India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 56-64.
  • ⦁ Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y., 2017. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277-293.
  • ⦁ Gómez, C., White, J. C., Wulder, M. A., 2016. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55-72.
  • ⦁ Li, F., Song, G., Liujun, Z., Yanan, Z., Di, L. 2017. Urban Vegetation Phenology Analysis Using High Spatio-Temporal NDVI Time Series. Urban Forestry & Urban Greening, 25, 43-57.
  • ⦁ Zhou, Y.N., Luo, J., Feng, L., Yang, Y., Chen, Y., Wu, W., 2019. Long-Short-Term-Memory-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data. Gıscience & Remote Sensing, 56(8), 1170-1191.
  • ⦁ Kartal, S., Sekertekin, A., 2022. Prediction of MODIS Land Surface Temperature Using New Hybrid Models Based on Spatial Interpolation Techniques and Deep Learning Models. Environmental Science and Pollution Research, 1-20.
  • ⦁ Zhang, Q., Ge, L., Zhang, R., Metternicht, G. I., Du, Z., Kuang, J., Xu, M., 2021. Deep-Learning-Based Burned Area Mapping Using the Synergy of Sentinel-1&2 Data. Remote Sensing of Environment, 264, 112575.
  • ⦁ Belenguer-Plomer, M.A., Tanase, M.A., Chuvieco, E., Bovolo, F., 2021. CNN-Based Burned Area Mapping Using Radar and Optical Data. Remote Sensing of Environment, 260, 112468.
  • ⦁ Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J.J., Geertsema, M., Khosravi, K., Amini, A., Bahrami, S., Rahmati, O., Habibi, K., Mohammadi, A., Nguyen, H., Melesse, A.M., Ahmad, B.B., Ahmad, A., 2020. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 12(2), 266.
  • ⦁ Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., Zhang, L., 2015. Missing Information Reconstruction of Remote Sensing Data: a Technical Review. IEEE Geoscience and Remote Sensing Magazine, 3(3), 61-85.
  • ⦁Wu, W., Ge, L., Luo, J., Huan, R., Yang, Y., 2018. A Spectral–Temporal Patch-Based Missing Area Reconstruction for Time-Series Images. Remote Sensing, 10(10), 1560.
  • ⦁ Zhang, C., Li, W., Travis, D., 2007. Gaps-Fill of SLC-off Landsat ETM+ Satellite Image Using a Geostatistical Approach. International Journal of Remote Sensing, 28(22), 5103-5122.
  • ⦁ Zhang, L., Wu, X., 2006. An Edge-Guided Image Interpolation Algorithm Via Directional Filtering and Data Fusion. IEEE Transactions on Image Processing, 15(8), 2226-2238.
  • ⦁ Criminisi, A., Pérez, P., Toyama, K., 2004. Region Filling and Object Removal by Exemplar-Based Image Inpainting. IEEE Transactions on Image Processing, 13(9), 1200-1212.
  • ⦁ Wang, L., Qu, J.J., Xiong, X., Hao, X., Xie, Y., Che, N., 2006. A New Method for Retrieving Band 6 of Aqua MODIS. IEEE Geoscience and Remote Sensing Letters, 3(2), 267-270.
  • ⦁ Shen, H., Zeng, C., Zhang, L., 2010. Recovering Reflectance of AQUA MODIS Band 6 Based on Within-Class Local Fitting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 185-192.
  • ⦁ Rakwatin, P., Takeuchi, W., Yasuoka, Y., 2008. Restoration of Aqua MODIS Band 6 Using Histogram Matching and Local Least Squares Fitting. IEEE Transactions on Geoscience and Remote Sensing, 47(2), 613-627.
  • ⦁ Tseng, D. C., Tseng, H. T., Chien, C. L., 2008. Automatic Cloud Removal from Multi-Temporal SPOT Images. Applied Mathematics and Computation, 205(2), 584-600.
  • ⦁ Lin, C.H., Tsai, P.H., Lai, K.H., Chen, J.Y., 2012. Cloud Removal from Multitemporal Satellite Images Using Information Cloning. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 232-241.
  • ⦁ Gao, G., Gu, Y., 2017. Multitemporal Landsat Missing Data Recovery Based on Tempo-Spectral Angle Model. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3656-3668.
  • ⦁ Zhang, Q., Yuan, Q., Zeng, C., Li, X., Wei, Y., 2018. Missing Data Reconstruction in Remote Sensing Image with a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4274-4288.
  • ⦁ Das, M., Ghosh, S. K., 2017. A Deep-Learning-Based Forecasting Ensemble To Predict Missing Data for Remote Sensing Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5228-5236.
  • ⦁ Shao, M., Wang, C., Wu, T., Meng, D., Luo, J., 2020. Context-Based Multiscale Unified Network for Missing Data Reconstruction in Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
  • ⦁ Shao, M., Wang, C., Zuo, W., Meng, D., 2022. Efficient Pyramidal GAN for Versatile Missing Data Reconstruction in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14.
  • ⦁ Zhang, C., Zhou, L., Zhao, Y., Zhu, S., Liu, F., He, Y., 2020. Noise Reduction in the Spectral Domain of Hyperspectral Images Using Denoising Autoencoder Methods. Chemometrics and Intelligent Laboratory Systems, 203, 104063.
  • ⦁ Leite, N.M.N., Pereira, E.T., Gurjao, E.C., Veloso, L.R., 2018. Deep Convolutional Autoencoder for EEG Noise Filtering. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2605-2612.
  • ⦁ Luo, X., Li, X., Wang, Z., Liang, J., 2019. Discriminant Autoencoder for Feature Extraction in Fault Diagnosis. Chemometrics and Intelligent Laboratory Systems, 192, 103814.
  • ⦁ Li, Y., Huang, X., Li, J., Du, M., Zou, N., 2019. Specae: Spectral Autoencoder for Anomaly Detection in Attributed Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2233-2236.
  • ⦁ Tsai, D. M., Jen, P. H., 2021. Autoencoder-Based Anomaly Detection for Surface Defect Inspection. Advanced Engineering Informatics, 48, 101272.
  • ⦁ Chen, Z., Yeo, C.K., Lee, B.S., Lau, C.T., 2018. Autoencoder-Based Network Anomaly Detection. In 2018 Wireless Telecommunications Symposium (WTS) (Pp. 1-5). IEEE.
  • ⦁ Asadi, R., Regan, A., 2019. A Convolution Recurrent Autoencoder for Spatio-Temporal Missing Data Imputation. Arxiv Preprint Arxiv:1904.12413.

Reconstruction of Missing Data in Remote Sensing Images Using

Year 2022, , 853 - 862, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230776

Abstract

Reconstruction of missing data in satellite images in remote sensing studies is of great importance in terms of increasing data availability and facilitating analysis processes. In this study, an Artificial Neural Network (ANN) model called an autoencoder was used to solve this problem. The study aims to develop an ANN model that will successfully reconstruct satellite images that contain largely missing data and are therefore difficult to reconstruct with high accuracy by classical methods such as interpolation. The model was tested on daily surface temperature data (MYD11A1) with 1-km resolution obtained with Moderate Resolution Imaging Spectroradiometry (MODIS) sensors. The study area covers a region located in the south of Turkey, in the north of Antalya province, and within the borders of Burdur and Isparta. As a result of the study carried out on 306 images belonging to the 2017-2020 date range, it was seen that the model was able to reconstruct the images containing 70% or more missing data with a Mean Absolute Error (MAE) value of 1.79.

References

  • ⦁ Salmon, B.P., Olivier, J.C., Wessels, K.J., Kleynhans, W., Van Den Bergh, F., Steenkamp, K.C., 2010. Unsupervised Land Cover Change Detection: Meaningful Sequential Time Series Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 327-335.
  • ⦁ Rahman, A., Aggarwal, S.P., Netzband, M., Fazal, S., 2010. Monitoring Urban Sprawl Using Remote Sensing and GIS Techniques of A Fast Growing Urban Centre, India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 56-64.
  • ⦁ Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y., 2017. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277-293.
  • ⦁ Gómez, C., White, J. C., Wulder, M. A., 2016. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55-72.
  • ⦁ Li, F., Song, G., Liujun, Z., Yanan, Z., Di, L. 2017. Urban Vegetation Phenology Analysis Using High Spatio-Temporal NDVI Time Series. Urban Forestry & Urban Greening, 25, 43-57.
  • ⦁ Zhou, Y.N., Luo, J., Feng, L., Yang, Y., Chen, Y., Wu, W., 2019. Long-Short-Term-Memory-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data. Gıscience & Remote Sensing, 56(8), 1170-1191.
  • ⦁ Kartal, S., Sekertekin, A., 2022. Prediction of MODIS Land Surface Temperature Using New Hybrid Models Based on Spatial Interpolation Techniques and Deep Learning Models. Environmental Science and Pollution Research, 1-20.
  • ⦁ Zhang, Q., Ge, L., Zhang, R., Metternicht, G. I., Du, Z., Kuang, J., Xu, M., 2021. Deep-Learning-Based Burned Area Mapping Using the Synergy of Sentinel-1&2 Data. Remote Sensing of Environment, 264, 112575.
  • ⦁ Belenguer-Plomer, M.A., Tanase, M.A., Chuvieco, E., Bovolo, F., 2021. CNN-Based Burned Area Mapping Using Radar and Optical Data. Remote Sensing of Environment, 260, 112468.
  • ⦁ Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J.J., Geertsema, M., Khosravi, K., Amini, A., Bahrami, S., Rahmati, O., Habibi, K., Mohammadi, A., Nguyen, H., Melesse, A.M., Ahmad, B.B., Ahmad, A., 2020. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 12(2), 266.
  • ⦁ Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., Zhang, L., 2015. Missing Information Reconstruction of Remote Sensing Data: a Technical Review. IEEE Geoscience and Remote Sensing Magazine, 3(3), 61-85.
  • ⦁Wu, W., Ge, L., Luo, J., Huan, R., Yang, Y., 2018. A Spectral–Temporal Patch-Based Missing Area Reconstruction for Time-Series Images. Remote Sensing, 10(10), 1560.
  • ⦁ Zhang, C., Li, W., Travis, D., 2007. Gaps-Fill of SLC-off Landsat ETM+ Satellite Image Using a Geostatistical Approach. International Journal of Remote Sensing, 28(22), 5103-5122.
  • ⦁ Zhang, L., Wu, X., 2006. An Edge-Guided Image Interpolation Algorithm Via Directional Filtering and Data Fusion. IEEE Transactions on Image Processing, 15(8), 2226-2238.
  • ⦁ Criminisi, A., Pérez, P., Toyama, K., 2004. Region Filling and Object Removal by Exemplar-Based Image Inpainting. IEEE Transactions on Image Processing, 13(9), 1200-1212.
  • ⦁ Wang, L., Qu, J.J., Xiong, X., Hao, X., Xie, Y., Che, N., 2006. A New Method for Retrieving Band 6 of Aqua MODIS. IEEE Geoscience and Remote Sensing Letters, 3(2), 267-270.
  • ⦁ Shen, H., Zeng, C., Zhang, L., 2010. Recovering Reflectance of AQUA MODIS Band 6 Based on Within-Class Local Fitting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 185-192.
  • ⦁ Rakwatin, P., Takeuchi, W., Yasuoka, Y., 2008. Restoration of Aqua MODIS Band 6 Using Histogram Matching and Local Least Squares Fitting. IEEE Transactions on Geoscience and Remote Sensing, 47(2), 613-627.
  • ⦁ Tseng, D. C., Tseng, H. T., Chien, C. L., 2008. Automatic Cloud Removal from Multi-Temporal SPOT Images. Applied Mathematics and Computation, 205(2), 584-600.
  • ⦁ Lin, C.H., Tsai, P.H., Lai, K.H., Chen, J.Y., 2012. Cloud Removal from Multitemporal Satellite Images Using Information Cloning. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 232-241.
  • ⦁ Gao, G., Gu, Y., 2017. Multitemporal Landsat Missing Data Recovery Based on Tempo-Spectral Angle Model. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3656-3668.
  • ⦁ Zhang, Q., Yuan, Q., Zeng, C., Li, X., Wei, Y., 2018. Missing Data Reconstruction in Remote Sensing Image with a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4274-4288.
  • ⦁ Das, M., Ghosh, S. K., 2017. A Deep-Learning-Based Forecasting Ensemble To Predict Missing Data for Remote Sensing Analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5228-5236.
  • ⦁ Shao, M., Wang, C., Wu, T., Meng, D., Luo, J., 2020. Context-Based Multiscale Unified Network for Missing Data Reconstruction in Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
  • ⦁ Shao, M., Wang, C., Zuo, W., Meng, D., 2022. Efficient Pyramidal GAN for Versatile Missing Data Reconstruction in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14.
  • ⦁ Zhang, C., Zhou, L., Zhao, Y., Zhu, S., Liu, F., He, Y., 2020. Noise Reduction in the Spectral Domain of Hyperspectral Images Using Denoising Autoencoder Methods. Chemometrics and Intelligent Laboratory Systems, 203, 104063.
  • ⦁ Leite, N.M.N., Pereira, E.T., Gurjao, E.C., Veloso, L.R., 2018. Deep Convolutional Autoencoder for EEG Noise Filtering. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2605-2612.
  • ⦁ Luo, X., Li, X., Wang, Z., Liang, J., 2019. Discriminant Autoencoder for Feature Extraction in Fault Diagnosis. Chemometrics and Intelligent Laboratory Systems, 192, 103814.
  • ⦁ Li, Y., Huang, X., Li, J., Du, M., Zou, N., 2019. Specae: Spectral Autoencoder for Anomaly Detection in Attributed Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2233-2236.
  • ⦁ Tsai, D. M., Jen, P. H., 2021. Autoencoder-Based Anomaly Detection for Surface Defect Inspection. Advanced Engineering Informatics, 48, 101272.
  • ⦁ Chen, Z., Yeo, C.K., Lee, B.S., Lau, C.T., 2018. Autoencoder-Based Network Anomaly Detection. In 2018 Wireless Telecommunications Symposium (WTS) (Pp. 1-5). IEEE.
  • ⦁ Asadi, R., Regan, A., 2019. A Convolution Recurrent Autoencoder for Spatio-Temporal Missing Data Imputation. Arxiv Preprint Arxiv:1904.12413.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Serkan Kartal This is me 0000-0001-9801-8986

Publication Date December 30, 2022
Published in Issue Year 2022

Cite

APA Kartal, S. (2022). Otokodlayıcılar Kullanarak Uzaktan Algılama Görüntülerindeki Eksik Verilerin Yeniden Yapılandırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 853-862. https://doi.org/10.21605/cukurovaumfd.1230776