Research Article
BibTex RIS Cite

Teleskopik Platform Üretiminde Kalite Sorunlarının Değerlendirilmesi için FMEA Tabanlı Bulanık Topsis

Year 2022, , 875 - 884, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230787

Abstract

Proses ve ürün kalitesini hızlı ve en az maliyetli şekilde arttırmak için önemli kalite sorunlarına neden olan prosese odaklanmak oldukça faydalıdır. Bu çalışmada otomotiv sektöründe araç üstü ekipman üretimi yapan bir firmada kalite sorunları ve buna bağlı süreçler incelenmiştir. Bu çalışmanın amacı, süreç ve ürün hatalarını azaltmak için kalite iyileştirme perspektifi sağlamaktır. Arızaları tespit etmek, nedenlerini belirlemek ve önceliklendirmek için Hata Türü ve Etkileri Analizi (HTEA) uygulanmıştır. Kritik kalite hataları geleneksel HTEA ve HTEA tabanlı bulanık İdeal Çözüme Benzerliğe Göre Tercih Sıralama tekniği (TOPSIS) kullanılarak ortaya konulmuştur. HTEA tabanlı bulanık TOPSIS yöntemi, karar vericilerin öznel yargılarından kaynaklanan belirsizliği ele alma yeteneği nedeniyle önerilmiştir. Sonuçlar karşılaştırılmış ve kalite problemine neden olan en önemli proses hatası için önlemler sunulmuştur.

References

  • Braglia, M., Frosolini, M., Montanari, R., 2003. Fuzzy TOPSIS Approach for Failure Mode, Effects and Criticality Analysis. Quality and Reliability Engineering International, 19(5), 425–443.
  • Meng Tay, K., Peng Lim, C., 2006. Fuzzy FMEA with a Guided Rules Reduction System for Prioritization of Failures. International Journal of Quality & Reliability Management, 23(8), 1047–1066.
  • Zheng, J.J., Wang, X.M., Wang, X.L., Senior, E., 2009. FMEA Analysis of Backfilling Pipeline System and Fuzzy Evaluation of Failure Effects. China Safety Science Journal (CSSJ), 06.
  • Gargama, H., Chaturvedi, S.K., 2011. Criticality Assessment Models for Failure Mode Effects and Criticality Analysis Using Fuzzy Logic. IEEE Transactions on Reliability, 60(1), 102-110.
  • Liu, H.C., Liu, L., Li, P., 2014. Failure Mode and Effects Analysis Using Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance Operator. International Journal of Systems Science, 45(10), 2012-2030.
  • Liu, H.C., Li, P., You, J.X., Chen, Y.Z., 2015.
  • A Novel Approach for FMEA: Combination of Interval 2-tuple Linguistic Variables and Gray Relational Analysis. Quality and Reliability Engineering International, 31(5), 761-772.
  • Sharma, K.D., Srivastava, S., 2018. Failure Mode and Effect Analysis (FMEA) Implementation: A Literature Review. J Adv Res Aeronaut Space Sci, 5, 1-17.
  • Kutlu, A.C., Ekmekçioğlu, M., 2012. Fuzzy Failure Modes and Effects Analysis by Using Fuzzy TOPSIS-based Fuzzy AHP. Expert Systems with Applications, 39(1), 61-67.
  • Narayana, S.N., Parthiban, P., Dhanalakshmi, R., 2020. Assessment and Implementation of Lean and Green Supply Chain in Medium Scale Automobile Industries Using AHP and Fuzzy TOPSIS. Journal of Scientific and Industrial Research (JSIR), 79(8), 720-726.
  • Wang, C.H., 2011. A Novel Approach to Conduct Risk Analysis of FMEA for PCB Fabrication Process. In 2011 IEEE International Conference on Industrial Engineering and Engineering Management, 1275-1278.
  • Senthilkannan, N., Parameshwaran, R., 2018. Integrated Approach for Product Optimisation in a Rolling Mill Using Fuzzy MCDM Tools. International Journal of Additive and Subtractive Materials Manufacturing, 2(1), 25- 44.
  • Vahdani, B., Salimi, M., Charkhchian, M., 2015. A New FMEA Method by Integrating Fuzzy Belief Structure and TOPSIS to Improve Risk Evaluation Process. The International Journal of Advanced Manufacturing Technology, 77(1-4), 357-368.
  • Tekez, E.K., 2018. Failure Modes and Effects Analysis Using Fuzzy TOPSIS in Knitting Process. Textile and Apparel, 28(1), 21-26.
  • Ahmadi, M., Molana, S.M.H., Sajadi, S.M., 2017. A Hybrid FMEA-TOPSIS Method for Risk Management, Case Study: Esfahan Mobarakeh Steel Company. International Journal of Process Management and Benchmarking, 7(3), 397-408.
  • Kolios, A.J., Umofia, A., Shafiee, M., 2017. Failure Mode and Effects Analysis Using A Fuzzy-TOPSIS Method: A Case Study of Subsea Control Module. International Journal of Multicriteria Decision Making, 7(1), 29-53.
  • Li, Y., Zhu, L., 2020. Risk Analysis of Human Error in Interaction Design by Using a Hybrid Approach Based on FMEA, SHERPA, and Fuzzy TOPSIS. Quality and Reliability Engineering International, 36(5), 1657-1677.
  • Selim, H., Yunusoglu, M.G., Yılmaz Balaman, Ş., 2016. A Dynamic Maintenance Planning Framework Based on Fuzzy TOPSIS and FMEA: Application in an International Food Company. Quality and Reliability Engineering International, 32(3), 795-804.

FMEA Based Fuzzy Topsis for Assessment of Quality Problems in Telescopic Platform Production

Year 2022, , 875 - 884, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230787

Abstract

In order to increase process and product quality fast and least costly, it is very useful to focus on the process that causes the important quality problems. In this study, quality problems and related processes in a company that produces on-vehicle equipment in the automotive industry are examined. The purpose of this study is to provide a quality improvement perspective to reduce process and product defects. Fault Mode and Effects Analysis (FMEA) is applied to detect faults, determine their causes and prioritize them. Prioritization of critical quality errors is revealed using traditional FMEA and FMEA-based fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The FMEA-based fuzzy TOPSIS method has been proposed because of its ability to handle uncertainty arising from the subjective judgments of decision makers. The results are compared and the preventions are suggested to avoid from the most important process that causes the quality problem.

References

  • Braglia, M., Frosolini, M., Montanari, R., 2003. Fuzzy TOPSIS Approach for Failure Mode, Effects and Criticality Analysis. Quality and Reliability Engineering International, 19(5), 425–443.
  • Meng Tay, K., Peng Lim, C., 2006. Fuzzy FMEA with a Guided Rules Reduction System for Prioritization of Failures. International Journal of Quality & Reliability Management, 23(8), 1047–1066.
  • Zheng, J.J., Wang, X.M., Wang, X.L., Senior, E., 2009. FMEA Analysis of Backfilling Pipeline System and Fuzzy Evaluation of Failure Effects. China Safety Science Journal (CSSJ), 06.
  • Gargama, H., Chaturvedi, S.K., 2011. Criticality Assessment Models for Failure Mode Effects and Criticality Analysis Using Fuzzy Logic. IEEE Transactions on Reliability, 60(1), 102-110.
  • Liu, H.C., Liu, L., Li, P., 2014. Failure Mode and Effects Analysis Using Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance Operator. International Journal of Systems Science, 45(10), 2012-2030.
  • Liu, H.C., Li, P., You, J.X., Chen, Y.Z., 2015.
  • A Novel Approach for FMEA: Combination of Interval 2-tuple Linguistic Variables and Gray Relational Analysis. Quality and Reliability Engineering International, 31(5), 761-772.
  • Sharma, K.D., Srivastava, S., 2018. Failure Mode and Effect Analysis (FMEA) Implementation: A Literature Review. J Adv Res Aeronaut Space Sci, 5, 1-17.
  • Kutlu, A.C., Ekmekçioğlu, M., 2012. Fuzzy Failure Modes and Effects Analysis by Using Fuzzy TOPSIS-based Fuzzy AHP. Expert Systems with Applications, 39(1), 61-67.
  • Narayana, S.N., Parthiban, P., Dhanalakshmi, R., 2020. Assessment and Implementation of Lean and Green Supply Chain in Medium Scale Automobile Industries Using AHP and Fuzzy TOPSIS. Journal of Scientific and Industrial Research (JSIR), 79(8), 720-726.
  • Wang, C.H., 2011. A Novel Approach to Conduct Risk Analysis of FMEA for PCB Fabrication Process. In 2011 IEEE International Conference on Industrial Engineering and Engineering Management, 1275-1278.
  • Senthilkannan, N., Parameshwaran, R., 2018. Integrated Approach for Product Optimisation in a Rolling Mill Using Fuzzy MCDM Tools. International Journal of Additive and Subtractive Materials Manufacturing, 2(1), 25- 44.
  • Vahdani, B., Salimi, M., Charkhchian, M., 2015. A New FMEA Method by Integrating Fuzzy Belief Structure and TOPSIS to Improve Risk Evaluation Process. The International Journal of Advanced Manufacturing Technology, 77(1-4), 357-368.
  • Tekez, E.K., 2018. Failure Modes and Effects Analysis Using Fuzzy TOPSIS in Knitting Process. Textile and Apparel, 28(1), 21-26.
  • Ahmadi, M., Molana, S.M.H., Sajadi, S.M., 2017. A Hybrid FMEA-TOPSIS Method for Risk Management, Case Study: Esfahan Mobarakeh Steel Company. International Journal of Process Management and Benchmarking, 7(3), 397-408.
  • Kolios, A.J., Umofia, A., Shafiee, M., 2017. Failure Mode and Effects Analysis Using A Fuzzy-TOPSIS Method: A Case Study of Subsea Control Module. International Journal of Multicriteria Decision Making, 7(1), 29-53.
  • Li, Y., Zhu, L., 2020. Risk Analysis of Human Error in Interaction Design by Using a Hybrid Approach Based on FMEA, SHERPA, and Fuzzy TOPSIS. Quality and Reliability Engineering International, 36(5), 1657-1677.
  • Selim, H., Yunusoglu, M.G., Yılmaz Balaman, Ş., 2016. A Dynamic Maintenance Planning Framework Based on Fuzzy TOPSIS and FMEA: Application in an International Food Company. Quality and Reliability Engineering International, 32(3), 795-804.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mahire Seray Bocut This is me 0000-0003-1251-9486

Nuşin Uncu This is me 0000-0003-3030-3363

Publication Date December 30, 2022
Published in Issue Year 2022

Cite

APA Bocut, M. S., & Uncu, N. (2022). FMEA Based Fuzzy Topsis for Assessment of Quality Problems in Telescopic Platform Production. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 875-884. https://doi.org/10.21605/cukurovaumfd.1230787