Research Article
BibTex RIS Cite

Modifiye Yaklaşımların Evapotranspirasyon Tahminlerine Etkisi: Van Örneği

Year 2022, , 973 - 988, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230919

Abstract

Suyun öneminin tartışılmaz olduğu gerçeğini göz önüne alarak, hidrolojik çevrimin ve onun en karmaşık bileşenlerinden biri olan evapotranspirasyon (ET) kaybının iyi belirlenmesi gerekmektedir. Topraktan ve açık su yüzeylerinden buharlaşma ve bitkilerden terleme yoluyla kaybedilen suyun birleşimi olarak tanımlanan ET değerini belirlemek amacıyla birçok ampirik yöntem geliştirilmiş ve bu yöntemler üzerinde modifiye çalışmaları yapılmıştır. Dünyada yaygın olarak bilinen FAO-Penman-Monteith (FAO- PM) denklemi referans alınarak Hargreaves-Samani (HS) ve Blaney-Criddle (BC) denklemleri ile bu iki denklemin modifiye çalışmaları kullanılarak Van ilinde 11 istasyona ait 6 yıllık (2015-2020) günlük meteorolojik veriler ile ET hesabı yapılmış ve modifiye çalışmaların etkileri araştırılmıştır. Pearson Korelasyon Katsayısı (PCC) ve Ortalama Bağıl Hata (OBH) performans değerlendirme indislerinin kullanıldığı çalışmada, tüm sonuçlar incelendiğinde HS ve Modifiye HS (MHS) denklemlerinin iyi sonuçlar verdiği izlenmiştir. HS denklemi içerisindeki sabit değerler üzerinden yapılan modifiye çalışmaları ile oluşan MHS denkleminin, bazı istasyonlarda HS denkleminden daha iyi sonuçlar verdiği gözlemlenmiştir. Yükseklik ile ET arasındaki ilişki dikkate alınarak HS ve BC denklemlerinin yükseklik verisini kullanan modifiye çalışmaları da araştırmaya dâhil edilmiştir. Rakım bazlı modifiye edilen HS denklemi 6 denklem arasında ortalama 0,88 korelasyon değeri ile en kötü sonuçlara sahip denklem olmuştur. BC denklemi üzerinde yapılan modifiye çalışmalar BC denklemine kıyasla daha iyi sonuçlar vermiştir.

References

  • ⦁ Yates, D., Strzebek, K., 1994. Potential Evapotranspiration Methods and their Impact on the Assessment of River Basin Runoff under Climate Change. International Institute for Applied Systems Analysis, WP-94-46, Laxenburg, Austria, 28.
  • ⦁ Kagele, W.C., 1985. An Evaluation of Potential Evapotranspiration Estimates for Selected Sites within Arizona. Master of Science with a Major in Soil and Water Science. University of Arizona, 77.
  • ⦁ Dingman, S. L., 2002. Physical Hydrology. Prentice-Hall, Inc., Upper Saddle River, New Jersey, Second Edition, 646.
  • ⦁ Doğan Demir, A., Meral, R., 2016. Bingöl İli Koşullarında Referans Bitki Su Tüketimin Doğrudan ve Farklı Tahmin Yöntemleri ile Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 3, 45-51.
  • ⦁ Bağçacı, S. Ç., Şarlak, N., 2019. Karaman İli Potansiyel Evapotranspirasyon Tahmini. Soil Water Journal, Special Issue, 1-8. https://doi.org/10.21657/topraksu.654742.
  • ⦁ Liu, B., Cui, Y., Shi, Y., Cai, X., Luo, Y., Zhang L., 2019. Comparison of Evapotranspiration Measurements Between Eddy Covariance and Lysimeters in Paddy Fields under Alternate Wetting and Drying Irrigation. Paddy Water Environment, 17, 725–739. https://doi.org/10.1007/s10333-019- 00753-y.
  • ⦁ Allen, R.G., Periera, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the UN, Rome, Italy, 300.
  • ⦁ Şarlak, N., Bağçacı, S.Ç., 2020. Ampirik Potansiyel Evapotranspirasyon Tahmin Yöntemlerinin Değerlendirilmesi: Uygulama Konya Kapalı Havzası, Teknik Dergi, 1-18. https://doi.org/10.18400/tekderg.408019.
  • ⦁ Chowdhury, A., Gupta, D., Das, D.P., Bhowmick, A., 2017. Comparison of Different Evapotranspiration Estimation Techniques for Mohanpur, Nadia District, West Bengal. International Journal of Computational Engineering Research (IJCER), 7, 33-39.
  • ⦁ Brouwer, C., Heibloem H., 1986. Irrigation Water Management: Irrigation Water Needs, Irrigation Water Management Training Manual No. 3, Land and Water Development Division FAO Via delle Terme di Caracalla 00100 Rome, Italy, 102.
  • ⦁ Koç, D.L., 2022. Çukurova Yöresi Koşullarında Bazı Buharlaşma Modellerinin Performanslarının Değerlendirilmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19 (1), 145-155. https://doi.org/10.33462/jotaf.938894.
  • ⦁ Dlouha, D., Dubovsky, V., Pospisil, L., 2021. Optimal Calibration of Evaporation Models against Penman–Monteith Equation. Water, 13(11), 1484. https://doi.org/10.3390/w13111 484.
  • ⦁ Hafeez, M., Chatha, Z.A., Khan, A.A., Gulshan, A.B., Basit, A., Tahira, A., 2020. Comparative Analysis of Reference Evapotranspiration by Hargreaves and Blaney- Criddle Equations in Semi-Arid Climatic Conditions, Current Research in Agricultural Sciences, 7(2), 525-57. https://doi.org/10. 18488/journal.68.2020.72.52.57.
  • ⦁ Elağca, A., Diş, M.Ö., 2021. Temperature- Driven Evaporation Analysis over Ballıkaya Catchment. Eskişehir Technical University Journal of Science and Technology A– Applied Science and Engineering, 22(3), 290–298. https://doi.org/10.18038/estubtda.911741.
  • ⦁ Okkan, U., Kıymaz, H., 2020. Questioning of Empirically Derived and Locally Calibrated Potential Evapotranspiration Equations for a Lumped Water Balance Model. Water Supply, 20(3), 1141-1156. https://doi.org/10.2166/ wcc.2019.292.
  • ⦁ Çıtakoğlu, H., Haktanır, T., 2016. Türkiye Referans Evapotranspirasyon Değerlerinin Sıcaklığa Bağlı Olarak Tahmini için En Uygun Hargreaves-Samani Denkleminin Belirlenmesi. T.C. Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Proje No. FBA-2014-4875), Kayseri, 24.
  • ⦁ Usta, S., 2022. Karadeniz Bölgesi İklim Koşullarına Uygun Jensen Haise Yöntemi Referans Evapotranspirasyon Tahmin Eşitliklerinin Geliştirilmesi. Avrupa Bilim ve Teknoloji Dergisi, 38, 415-427. https://doi.org/10.31590/ejosat.1130701.
  • ⦁ Arslan, F., Ergül, M., 2014. Çayören Barajı Sulama Havzası ve Çevresinde Tarımsal Faaliyetler. Akademik Sosyal Araştırmalar Dergisi, 2(1), 171-190. https://doi.org/ 10.16992/ASOS.63.
  • ⦁ Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (Eds.), 2013. IPCC, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996.
  • ⦁ DEM, 2021. Geographic Information Systems, Digital Elevation Model Data Website, https://earthexplorer.usgs.gov/. Erişim Tarihi: 10.09.2021.
  • ⦁ Penman, H. L., 1948. Natural Evaporation from Open Water, Bare Soil, and Grass. Royal Society of London Proceedings, Series A, 193,120-145. https://doi.org/10.1098/rspa.1948.0037.
  • ⦁ Hargreaves, G. H., 1975. Moisture Availability and Crop Production. Trans. ASAE, 18(5), 980–984. https://doi.org/10.13031/2013.36722.
  • ⦁ Hargreaves, G. H., Samani, Z. A., 1982. Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225–230. https://doi.org/10.1061/ JRCEA4.0001390.
  • ⦁ Hargreaves, G. H., Samani, Z. A., 1985. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1 (2), 96-99. https://doi.org/ 10.13031/2013.26773.
  • ⦁ Allen, R. G., 1992. Evaluation of a Temperature Difference Method for Computing Grass Reference Evapotranspiration. Report Submitted to FAO, Rome, 50.
  • ⦁ Hargreaves, G. H., Allen, R. G., 2003. History and Evaluaiton of Hargreaves Evapotranspiration Equaiton. Journal of Irrigation and Drainage Engineering, 129, 53-63. https://doi.org/ 10.1061/(ASCE)0733-9437 (2003)129:1(53).
  • ⦁ Droogers, P., Allen, R.G., 2002. Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrigation and Drainage System, 16, 33–45. https://doi.org/10.1023/ A:1015508322413.
  • ⦁ Blaney, H.F., Morin, K.V., 1942. Evaporation and Consumptive Use of Water Empirical Formulas. Transactions American Geophysical Union, 23, 76–83. https://doi.org/10.1029/ TR023i001p00076.
  • ⦁ Blaney, H.F., Criddle, W.D., 1945. Determining Water Requirements in Irrigated Areas from Climatological Data. Processed, 17.
  • ⦁ Blaney, H.F., Criddle, W.D., 1950. Determining Water Requirements in Irrigation Areas from Climatological and Irrigation Data, United States Department of Agriculture. Soil Conservation Service, Washington, D.C, 48.
  • ⦁ Blaney, H.F., Criddle, W.D., 1962. Determining Consumptive Use and Irrigation Water Requirements, United States Department of Agriculture in Cooperation with the Office of Utah State Engineer. Technical Bulletin No. 1275, Washington, D.C, 59.
  • ⦁ Doorenbos, J., Pruitt, W.O., 1977. Crop Water Requirements, FAO Irrigation and Drainage Paper 24, Food and Agriculture Organization of the United Nations. Viale delle Terme di Caracalla, 00100 Rome, Italy, 144.
  • ⦁ Shahidian, S., Serraheiro, R., Serrano, J., Teixeira, J., Haie, N., Santos, F., 2014. Hargreaves and Other Reduced-Set Methods for Calculating Evapotranspiration. Evapotranspiration–Remote Sensing and Modeling, 23, 59-80.
  • ⦁ Allen, R.G., Pruitt, W.O., 1986. Rational Use of the FAO Blaney-criddle Formula, Journal Irrigation and Drainage Engineering, 112, 139-155. https://doi.org/10.1061/(ASCE)0733- 9437(1986)112:2(139).
  • ⦁ Krause, P., Boyle, D.P., Base, F., 2005. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences, 5, 89-97. https://doi.org/10.5194/ adgeo-5-89-2005.
  • ⦁ Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE. American Society of Agricultural and Biological Engineers, 50(3), 885-900. https://doi.org/10.13031/2013.23153.
  • ⦁ Dis, M. O., Anagnostou, E., Mei, Y., 2018. Using High-Resolution Satellite Precipitation for Flood Frequency Analysis: Case Study over the Connecticut River Basin. Journal of Flood Risk Management, 11, 514-526. https://doi.org/10.1111/jfr3.12250.

The Effect of Modified Approaches on Evapotranspiration Estimates: Case Study over Van

Year 2022, , 973 - 988, 30.12.2022
https://doi.org/10.21605/cukurovaumfd.1230919

Abstract

Considering the fact that the importance of water is indisputable, the hydrological cycle and its most complex components, evapotranspiration (ET) loss should be well defined. In order to determine the ET value, which is defined as the combination of water lost from soil and open water surfaces through evaporation and transpiration from plants, many empirical methods have been developed and modified studies have been carried out on these methods. By taking the widely known FAO-Penman-Monteith (FAO-PM) equation as reference, the Hargreaves-Samani (HS) and Blaney-Criddle (BC) equations and the modified studies of these two equations, 6 years (2015-2020) of 11 stations in Van province ET calculations were made with daily meteorological data and the effects of modified studies were investigated. In the study in which Pearson Correlation Coefficient (PCC) and Mean Relative Error (MRE) performance evaluation indices were used, it was observed that HS and Modified HS (MHS) equations gave acceptable results when all the results were examined. At some stations, it has been found that the MHS equation, which is formed by the modification studies made over the constant values in the HS equation, gives better results than the HS equation. Modified evaluations of the HS and BC equations utilizing altitude data were also included in the study to consider the relationship between altitude and ET. Altitude-based modified HS equation was the equation with the lowest PCC results with an average correlation value of 0.88 among the 6 equations. Modified studies on the BC equation gave better results compared to the BC equation.

References

  • ⦁ Yates, D., Strzebek, K., 1994. Potential Evapotranspiration Methods and their Impact on the Assessment of River Basin Runoff under Climate Change. International Institute for Applied Systems Analysis, WP-94-46, Laxenburg, Austria, 28.
  • ⦁ Kagele, W.C., 1985. An Evaluation of Potential Evapotranspiration Estimates for Selected Sites within Arizona. Master of Science with a Major in Soil and Water Science. University of Arizona, 77.
  • ⦁ Dingman, S. L., 2002. Physical Hydrology. Prentice-Hall, Inc., Upper Saddle River, New Jersey, Second Edition, 646.
  • ⦁ Doğan Demir, A., Meral, R., 2016. Bingöl İli Koşullarında Referans Bitki Su Tüketimin Doğrudan ve Farklı Tahmin Yöntemleri ile Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 3, 45-51.
  • ⦁ Bağçacı, S. Ç., Şarlak, N., 2019. Karaman İli Potansiyel Evapotranspirasyon Tahmini. Soil Water Journal, Special Issue, 1-8. https://doi.org/10.21657/topraksu.654742.
  • ⦁ Liu, B., Cui, Y., Shi, Y., Cai, X., Luo, Y., Zhang L., 2019. Comparison of Evapotranspiration Measurements Between Eddy Covariance and Lysimeters in Paddy Fields under Alternate Wetting and Drying Irrigation. Paddy Water Environment, 17, 725–739. https://doi.org/10.1007/s10333-019- 00753-y.
  • ⦁ Allen, R.G., Periera, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the UN, Rome, Italy, 300.
  • ⦁ Şarlak, N., Bağçacı, S.Ç., 2020. Ampirik Potansiyel Evapotranspirasyon Tahmin Yöntemlerinin Değerlendirilmesi: Uygulama Konya Kapalı Havzası, Teknik Dergi, 1-18. https://doi.org/10.18400/tekderg.408019.
  • ⦁ Chowdhury, A., Gupta, D., Das, D.P., Bhowmick, A., 2017. Comparison of Different Evapotranspiration Estimation Techniques for Mohanpur, Nadia District, West Bengal. International Journal of Computational Engineering Research (IJCER), 7, 33-39.
  • ⦁ Brouwer, C., Heibloem H., 1986. Irrigation Water Management: Irrigation Water Needs, Irrigation Water Management Training Manual No. 3, Land and Water Development Division FAO Via delle Terme di Caracalla 00100 Rome, Italy, 102.
  • ⦁ Koç, D.L., 2022. Çukurova Yöresi Koşullarında Bazı Buharlaşma Modellerinin Performanslarının Değerlendirilmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19 (1), 145-155. https://doi.org/10.33462/jotaf.938894.
  • ⦁ Dlouha, D., Dubovsky, V., Pospisil, L., 2021. Optimal Calibration of Evaporation Models against Penman–Monteith Equation. Water, 13(11), 1484. https://doi.org/10.3390/w13111 484.
  • ⦁ Hafeez, M., Chatha, Z.A., Khan, A.A., Gulshan, A.B., Basit, A., Tahira, A., 2020. Comparative Analysis of Reference Evapotranspiration by Hargreaves and Blaney- Criddle Equations in Semi-Arid Climatic Conditions, Current Research in Agricultural Sciences, 7(2), 525-57. https://doi.org/10. 18488/journal.68.2020.72.52.57.
  • ⦁ Elağca, A., Diş, M.Ö., 2021. Temperature- Driven Evaporation Analysis over Ballıkaya Catchment. Eskişehir Technical University Journal of Science and Technology A– Applied Science and Engineering, 22(3), 290–298. https://doi.org/10.18038/estubtda.911741.
  • ⦁ Okkan, U., Kıymaz, H., 2020. Questioning of Empirically Derived and Locally Calibrated Potential Evapotranspiration Equations for a Lumped Water Balance Model. Water Supply, 20(3), 1141-1156. https://doi.org/10.2166/ wcc.2019.292.
  • ⦁ Çıtakoğlu, H., Haktanır, T., 2016. Türkiye Referans Evapotranspirasyon Değerlerinin Sıcaklığa Bağlı Olarak Tahmini için En Uygun Hargreaves-Samani Denkleminin Belirlenmesi. T.C. Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Proje No. FBA-2014-4875), Kayseri, 24.
  • ⦁ Usta, S., 2022. Karadeniz Bölgesi İklim Koşullarına Uygun Jensen Haise Yöntemi Referans Evapotranspirasyon Tahmin Eşitliklerinin Geliştirilmesi. Avrupa Bilim ve Teknoloji Dergisi, 38, 415-427. https://doi.org/10.31590/ejosat.1130701.
  • ⦁ Arslan, F., Ergül, M., 2014. Çayören Barajı Sulama Havzası ve Çevresinde Tarımsal Faaliyetler. Akademik Sosyal Araştırmalar Dergisi, 2(1), 171-190. https://doi.org/ 10.16992/ASOS.63.
  • ⦁ Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (Eds.), 2013. IPCC, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996.
  • ⦁ DEM, 2021. Geographic Information Systems, Digital Elevation Model Data Website, https://earthexplorer.usgs.gov/. Erişim Tarihi: 10.09.2021.
  • ⦁ Penman, H. L., 1948. Natural Evaporation from Open Water, Bare Soil, and Grass. Royal Society of London Proceedings, Series A, 193,120-145. https://doi.org/10.1098/rspa.1948.0037.
  • ⦁ Hargreaves, G. H., 1975. Moisture Availability and Crop Production. Trans. ASAE, 18(5), 980–984. https://doi.org/10.13031/2013.36722.
  • ⦁ Hargreaves, G. H., Samani, Z. A., 1982. Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225–230. https://doi.org/10.1061/ JRCEA4.0001390.
  • ⦁ Hargreaves, G. H., Samani, Z. A., 1985. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1 (2), 96-99. https://doi.org/ 10.13031/2013.26773.
  • ⦁ Allen, R. G., 1992. Evaluation of a Temperature Difference Method for Computing Grass Reference Evapotranspiration. Report Submitted to FAO, Rome, 50.
  • ⦁ Hargreaves, G. H., Allen, R. G., 2003. History and Evaluaiton of Hargreaves Evapotranspiration Equaiton. Journal of Irrigation and Drainage Engineering, 129, 53-63. https://doi.org/ 10.1061/(ASCE)0733-9437 (2003)129:1(53).
  • ⦁ Droogers, P., Allen, R.G., 2002. Estimating Reference Evapotranspiration under Inaccurate Data Conditions. Irrigation and Drainage System, 16, 33–45. https://doi.org/10.1023/ A:1015508322413.
  • ⦁ Blaney, H.F., Morin, K.V., 1942. Evaporation and Consumptive Use of Water Empirical Formulas. Transactions American Geophysical Union, 23, 76–83. https://doi.org/10.1029/ TR023i001p00076.
  • ⦁ Blaney, H.F., Criddle, W.D., 1945. Determining Water Requirements in Irrigated Areas from Climatological Data. Processed, 17.
  • ⦁ Blaney, H.F., Criddle, W.D., 1950. Determining Water Requirements in Irrigation Areas from Climatological and Irrigation Data, United States Department of Agriculture. Soil Conservation Service, Washington, D.C, 48.
  • ⦁ Blaney, H.F., Criddle, W.D., 1962. Determining Consumptive Use and Irrigation Water Requirements, United States Department of Agriculture in Cooperation with the Office of Utah State Engineer. Technical Bulletin No. 1275, Washington, D.C, 59.
  • ⦁ Doorenbos, J., Pruitt, W.O., 1977. Crop Water Requirements, FAO Irrigation and Drainage Paper 24, Food and Agriculture Organization of the United Nations. Viale delle Terme di Caracalla, 00100 Rome, Italy, 144.
  • ⦁ Shahidian, S., Serraheiro, R., Serrano, J., Teixeira, J., Haie, N., Santos, F., 2014. Hargreaves and Other Reduced-Set Methods for Calculating Evapotranspiration. Evapotranspiration–Remote Sensing and Modeling, 23, 59-80.
  • ⦁ Allen, R.G., Pruitt, W.O., 1986. Rational Use of the FAO Blaney-criddle Formula, Journal Irrigation and Drainage Engineering, 112, 139-155. https://doi.org/10.1061/(ASCE)0733- 9437(1986)112:2(139).
  • ⦁ Krause, P., Boyle, D.P., Base, F., 2005. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Advances in Geosciences, 5, 89-97. https://doi.org/10.5194/ adgeo-5-89-2005.
  • ⦁ Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, Transactions of the ASABE. American Society of Agricultural and Biological Engineers, 50(3), 885-900. https://doi.org/10.13031/2013.23153.
  • ⦁ Dis, M. O., Anagnostou, E., Mei, Y., 2018. Using High-Resolution Satellite Precipitation for Flood Frequency Analysis: Case Study over the Connecticut River Basin. Journal of Flood Risk Management, 11, 514-526. https://doi.org/10.1111/jfr3.12250.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ali Uzunlar This is me 0000-0002-3602-3779

Arif Öz This is me 0000-0001-5504-4295

Muhammet Ömer Diş This is me 0000-0002-3347-5112

Publication Date December 30, 2022
Published in Issue Year 2022

Cite

APA Uzunlar, A., Öz, A., & Diş, M. Ö. (2022). Modifiye Yaklaşımların Evapotranspirasyon Tahminlerine Etkisi: Van Örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 973-988. https://doi.org/10.21605/cukurovaumfd.1230919