Research Article
BibTex RIS Cite

Numerical Investigation of the Effects of Rectangular Obstacles on the Thermal-Hydraulic Properties of a Circular Corrugated Channel

Year 2023, , 661 - 670, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377720

Abstract

In this study, the effect of rectangular obstacles, placed at different angles and heights on the bottom surface of a circular corrugated channel, on the channel’s thermal-hydraulic properties was investigated numerically. For analysis, a 500x10 mm dimensional channel, consisting of three sections (upstream, corrugated, and downstream), was used. The obstacles were placed on the canal surface at three different angles (β=45°, 90° and 135°) and at three different heights (h/H=0.1, 0.25 and 0.5). The solutions of the continuity, momentum and energy equations were performed using the k-ε turbulence model by means of the Ansys-Fluent finite volume method. For the flow field, the turbulent kinetic energy (TKE) contours, the average Nusselt number (Nu), friction factor (f), pressure drop (ΔP) and performance evaluation criterion number (PEC) values were obtained for the Reynolds number (Re) 5000-20000 range. The highest thermal-hydraulic performance was obtained for the h/H=0.1, β=45° channel model. This is 26.19% higher than the h/H=0.5, β=135° model with the lowest performance according to PEC values.

References

  • 1. Ajeel, R.K., Wan Salim, W.S-I., Hasnan, K., 2018. Impacts of Corrugation Profiles on the Flow and Heat Transfer Characteristics in Trapezoidal Corrugated Channel using Nanofluids. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 49(2), 170-179.
  • 2. Bayrak, E., Olcay, A.B., Serincan, M.F., 2019. Numerical Investigation of the Effects of Geometric Structure of Microchannel Heat Sink on Flow Characteristics and Heat Transfer Performance. International Journal of Thermal Sciences, 135, 589-600,
  • 3. Singh, P., Ji, Y., Ekkad, S.V., 2018. Experimental and Numerical Investigation of Heat and Fluid Flow in a Square Duct Featuring Criss-Cross Rib Patterns. Applied Thermal Engineering, 128, 415-425,
  • 4. Soliman, A.S., Xu, L., Dong, J., Cheng, P., 2022. Numerical Investigation of the Ribs’ Shape, Spacing, and Height on Heat Transfer Performance of Turbulent Flow in a Flat Plate Heat Exchanger. Sustainability, 14, 15143.
  • 5. Alfarawi, S., Abdel-Moneim, S.A., Bodalal, A., 2017. Experimental Investigations of Heat Transfer Enhancement From Rectangular Duct Roughened by Hybrid Ribs. International Journal of Thermal Sciences, 118, 123-138.
  • 6. Koca, F., 2022. Numerical Investigation of Corrugated Channel with Backward-Facing Step in Terms of Fluid Flow and Heat Transfer. J. Engin. Thermophys, 31, 187-199.
  • 7. Koca, F., 2022. Thermo-Hydraulic Performance Analysis of an Air Heater with Different Types of Ribs Placed on the Absorber Plate 3rd International Conference on Applied Engineering and Natural Sciences (ICAENS’2022), 6, 20-23 Temmuz 2022, Konya.
  • 8. Gururatana S., 2012. Numerical Simulation of Micro-Channel Heat Sink with Dimpled Surfaces. American Journal of Applied Sciences, 9(3), 399-404.
  • 9. Ajeel, R.H., Salim, W.S.-I.W., Hasnan, K., 2019. Experimental and Numerical Investigations of Convection Heat Transfer in Corrugated Channels Using Alumina Nanofluid under a Turbulent Flow Regime. Chemical Engineering Research and Design, 148, 202-217.
  • 10. Hamad, A.J., Ajeel, R.K., 2022. Combined Effect of Oblique Ribs and a Nanofluid on the Thermal-Hydraulic Performance of a Corrugated Channel: Numerical Study. J Eng Phys Thermophy, 95, 970-978.
  • 11. Tokgoz, N., Aksoy, M.M., Sahin, B., 2017. Investigation of Flow Characteristics and Heat Transfer Enhancement of Corrugated Duct Geometries. Appl. Therm. Eng., 118, 518-530.
  • 12. Dhaidan, N.S., Al-Mousawi, F.N., 2022. Thermal-Hydraulic Features of the Turbulent Flow Through Ribbed Channels. J Appl Mech Tech Phy., 63, 634-642.
  • 13. Mohammed, H.A., Abed, A.M., Wahid, M.A., 2013. The Effects of Geometrical Parameters of a Corrugated Channel with in Out-of-Phase Arrangement. International Communications in Heat and Mass Transfer, 40, 47-57.
  • 14. Zahran, S., Sultan, A.A., Bekheit, M., Elmarghany, M.R., 2022. Heat Transfer Augmentation Through Rectangular Cross Section Duct with One Corrugated Surface: An Experimental and Numerical Study. Case Studies in Thermal Engineering, 36, 102252.
  • 15. Hamad, A.J., Ajeel, R.K., 2022. Combined Effect of Oblique Ribs and A Nanofluid on The Thermal‐Hydraulic Performance of a Corrugated Channel: Numerical Study. J. Eng. Phys. Thermophy, 95, 970‐978.
  • 16. Eiamsa-ard, S., Promvonge, P., 2008. Numerical Study on Heat Transfer of Turbulent Channel Flow over Periodic Grooves. International Communications in Heat and Mass Transfer, 35(7), 844-852.

Dikdörtgensel Engellerin Dairesel Oluklu bir Kanalın Isıl-Hidrolik Özellikleri Üzerindeki Etkilerinin Sayısal Olarak İncelenmesi

Year 2023, , 661 - 670, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377720

Abstract

Bu çalışmada dairesel oluklu bir kanalın alt yüzeyine farklı açılar ve yüksekliklerde yerleştirilen dikdörtgensel engellerin kanalın ısıl-hidrolik özelliklerine olan etkisi sayısal olarak incelenmiştir. Analizler için 500x10 mm boyutlarında üç bölümden oluşan (yukarı akış, oluklu ve aşağı akış) bir kanal kullanılmıştır. Engeller kanal yüzeyine üç farklı açı (β=45°, 90° ve 135°) ve üç farklı yükseklikte (h/H=0,1, 0,25 ve 0,5) yerleştirilmiştir. Süreklilik, momentum ve enerji denklemlerinin çözümleri k-ε türbülans modeli kullanılarak Ansys-Fluent sonlu hacimler yöntemi ile gerçekleştirilmiştir. Akış alanına ait türbülans kinetik enerji (TKE) konturları ile ortalama Nusselt sayısı (Nu), sürtünme faktörü (f), basınç düşüşü (ΔP) ve performans değerlendirme kıstas sayısı (PEC) değerleri Reynolds sayısının (Re) 5000-20000 aralığı için elde edilmiştir. En yüksek termal-hidrolik performans h/H=0,1, β=45° kanal modeli için elde edilmiştir. Bu durum PEC değerlerine göre en düşük performansa sahip h/H=0,5, β=135° modele kıyasla %26,19 daha fazladır.

References

  • 1. Ajeel, R.K., Wan Salim, W.S-I., Hasnan, K., 2018. Impacts of Corrugation Profiles on the Flow and Heat Transfer Characteristics in Trapezoidal Corrugated Channel using Nanofluids. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 49(2), 170-179.
  • 2. Bayrak, E., Olcay, A.B., Serincan, M.F., 2019. Numerical Investigation of the Effects of Geometric Structure of Microchannel Heat Sink on Flow Characteristics and Heat Transfer Performance. International Journal of Thermal Sciences, 135, 589-600,
  • 3. Singh, P., Ji, Y., Ekkad, S.V., 2018. Experimental and Numerical Investigation of Heat and Fluid Flow in a Square Duct Featuring Criss-Cross Rib Patterns. Applied Thermal Engineering, 128, 415-425,
  • 4. Soliman, A.S., Xu, L., Dong, J., Cheng, P., 2022. Numerical Investigation of the Ribs’ Shape, Spacing, and Height on Heat Transfer Performance of Turbulent Flow in a Flat Plate Heat Exchanger. Sustainability, 14, 15143.
  • 5. Alfarawi, S., Abdel-Moneim, S.A., Bodalal, A., 2017. Experimental Investigations of Heat Transfer Enhancement From Rectangular Duct Roughened by Hybrid Ribs. International Journal of Thermal Sciences, 118, 123-138.
  • 6. Koca, F., 2022. Numerical Investigation of Corrugated Channel with Backward-Facing Step in Terms of Fluid Flow and Heat Transfer. J. Engin. Thermophys, 31, 187-199.
  • 7. Koca, F., 2022. Thermo-Hydraulic Performance Analysis of an Air Heater with Different Types of Ribs Placed on the Absorber Plate 3rd International Conference on Applied Engineering and Natural Sciences (ICAENS’2022), 6, 20-23 Temmuz 2022, Konya.
  • 8. Gururatana S., 2012. Numerical Simulation of Micro-Channel Heat Sink with Dimpled Surfaces. American Journal of Applied Sciences, 9(3), 399-404.
  • 9. Ajeel, R.H., Salim, W.S.-I.W., Hasnan, K., 2019. Experimental and Numerical Investigations of Convection Heat Transfer in Corrugated Channels Using Alumina Nanofluid under a Turbulent Flow Regime. Chemical Engineering Research and Design, 148, 202-217.
  • 10. Hamad, A.J., Ajeel, R.K., 2022. Combined Effect of Oblique Ribs and a Nanofluid on the Thermal-Hydraulic Performance of a Corrugated Channel: Numerical Study. J Eng Phys Thermophy, 95, 970-978.
  • 11. Tokgoz, N., Aksoy, M.M., Sahin, B., 2017. Investigation of Flow Characteristics and Heat Transfer Enhancement of Corrugated Duct Geometries. Appl. Therm. Eng., 118, 518-530.
  • 12. Dhaidan, N.S., Al-Mousawi, F.N., 2022. Thermal-Hydraulic Features of the Turbulent Flow Through Ribbed Channels. J Appl Mech Tech Phy., 63, 634-642.
  • 13. Mohammed, H.A., Abed, A.M., Wahid, M.A., 2013. The Effects of Geometrical Parameters of a Corrugated Channel with in Out-of-Phase Arrangement. International Communications in Heat and Mass Transfer, 40, 47-57.
  • 14. Zahran, S., Sultan, A.A., Bekheit, M., Elmarghany, M.R., 2022. Heat Transfer Augmentation Through Rectangular Cross Section Duct with One Corrugated Surface: An Experimental and Numerical Study. Case Studies in Thermal Engineering, 36, 102252.
  • 15. Hamad, A.J., Ajeel, R.K., 2022. Combined Effect of Oblique Ribs and A Nanofluid on The Thermal‐Hydraulic Performance of a Corrugated Channel: Numerical Study. J. Eng. Phys. Thermophy, 95, 970‐978.
  • 16. Eiamsa-ard, S., Promvonge, P., 2008. Numerical Study on Heat Transfer of Turbulent Channel Flow over Periodic Grooves. International Communications in Heat and Mass Transfer, 35(7), 844-852.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechatronics Engineering, Mechanical Engineering (Other)
Journal Section Articles
Authors

Ferhat Koca 0000-0001-8849-5295

Cahit Gürlek 0000-0002-0273-2999

Publication Date October 18, 2023
Published in Issue Year 2023

Cite

APA Koca, F., & Gürlek, C. (2023). Dikdörtgensel Engellerin Dairesel Oluklu bir Kanalın Isıl-Hidrolik Özellikleri Üzerindeki Etkilerinin Sayısal Olarak İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 661-670. https://doi.org/10.21605/cukurovaumfd.1377720