Research Article
BibTex RIS Cite

Strength Investigation of Slag-Based Geopolymer Composites Incorporating Different Amounts of Colemanite Waste and Silica Fume Under Different Exposure Conditions

Year 2023, , 841 - 849, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377782

Abstract

In this study, it is aimed to investigate the strength performance of slag-based geopolymer mortar with different percentages of silica fume and colemanite waste by mixing Na₂SiO₃ and NaOH as the alkaline activator for the geopolymerization reaction, and cured at room temperature were prepared, in terms of compressive strength, flexural strength, ultrasonic pulse velocity and freeze-thaw resistance parameters. Five different mixtures were prepared by using different amounts of silica fume and colemanite waste by using the same amount of ground granulated blast furnace slag, sand and 8M sodium hydroxide for these five mixtures. The mixture, including a paste proportion of 20% slag, 40% colemanite waste, and 40% silica fume, was used as a control mix. The maximum compressive strength (21.24 MPa, 38.32 MPa) flexural strength (5.86 MPa, 6.98), weight loss caused by freeze-thaw effect (0.56%) and ultrasonic pulse wave test (3082 m/s) results were noted as for 7th and 28th day, respectively. After -60 cycles [1 cycle consists of (-18 oC) for 90 minutes and (+4 oC) for 30 minutes], the maximum compressive and flexural strength was observed as (40.18 MPa and 4.92 MPa, respectively). The results indicated that the strength results were consistently increased as silica fume increased. The addition of a certain amount of silica fume gave promising results both in terms of the strength and durability aspects. Overall, according to this experimental study, the utilization of 30% colemanite waste and 50% silica fume can be recommended so as to balance both sustainability and engineering aspects.

References

  • 1. Malhotra, V.M., 2002. Introduction: Sustainable Development and Concrete Technology. Concrete International; 24(7), 1-22.
  • 2. Yang, K.H., Song, J.K., Song, K.II, 2013. Assessment of CO2 Reduction of Alkali-activated Concrete. Journal of Cleaner Production, 39, 265-272.
  • 3. Madhavi, T.C., Rameshwaran, P.M., 2020. Geopolymer Concrete-The Eco Friendly Alternate to Concrete. NBM and CW Infra Construction and Equipment Magazine.
  • 4. Abdel Wahab, M., Abdel Latif, I., Kohail, M., Almasry, A., 2017. The Use of Wollastonite to Enhance the Mechanical Properties of Mortar Mixes. Construction and Building Materials, 152, 304-309.
  • 5. Mayhoub, O.A., El-Sayed, A.R.N., Yehia, A., Kohail, A., 2021. Properties of Slag Based Geopolymer Reactive Powder Concrete. Ain Shams Engineering Journal, 12, 99-105.
  • 6. Black, L., 2016. Low Clinker Cement as a Sustainable Construction Material. In: Sustainability of Construction Materials (2nd ed), University of Leeds, Leeds, United Kingdom, 416-457.
  • 7. Bernal, S.A., Rodrı´guez, E.D., de Gutie´rrez, R.M., Gordillo, M., Provis, J.L., 2011. Mechanical and Thermal Characterization of Geopolymer Based on Silicate-Activated Metakaolin/Slag Blends. Journal of Material Science, 46, 5477-5486.
  • 8. Davidovits, J., 1991. Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis and Calorimetry, 37, 1633-1656.
  • 9. Rostami, M., Behfarnia, K., 2017. The Effect of Silica Fume on Durability of Alkali-Activated Slag Concrete. Construction and Building Materials, 134, 262-268.
  • 10. Okoye, F.N., Prakasha, S., Singh, N.B., 2017. Durability of Fly Ash Based Geopolymer Concrete in the Presence of Silica Fume. Journal of Cleaner Production, 149, 1062-1067.
  • 11. Okoyea, F.N., Durgaprasada, J., Singh, N.B., 2016. Effect of Silica Fume on The Mechanical Properties of Fly Ash. Ceramics International, 42, 3000-3006.
  • 12. Demir, D., Keles, G., 2006. Radiation Transmission of Concrete Including Boron Waste for 59.54 and 80.99 keV Gamma Rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 245(2), 501-504.
  • 13. Bideci, Ö.S., 2016. The Effect of High Temperature on Lightweight Concretes Produced with Colemanite Coated Pumice Aggregates. Construction and Building Materials, 113, 631-640
  • 14. Abalı, Y., Bayca, S.U., Targan, S., 2006. Evaluation of Blends Tincal Waste, Volcanic Tuff, Bentonite and Fly Ash for use as Cement Admixture. Journal of Hazardous Materials, B131, 126-130.
  • 15. Elbeyli, İ.Y., Derun, E.M., Gülen, J., Pişkin, S., 2003. Thermal Analysis of Borogypsum and Its Effects on The Physical Properties of Portland Cement. Cement and Concrete Research, 33, 1729-1735.
  • 16. Kaplan, M.F., 1989. Concrete Radiation Shielding. Press: John Wiley and Sons, New York, 448.
  • 17. BS EN 196-1, 2016. BSI Standards Publication Methods of Testing Cement Part 1: Determination of Strength.
  • 18. ASTM, 2010. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) 1. Chemical Analysis, (C109/C109M – 11b), 1-9.
  • 19. ASTM C348, 1998. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars ASTM C348, Annu. B. ASTM Stand. 4, 2-7.
  • 20. Uysal, M., Al-Mashhadani, M.M., Aygörmez, Y., Canpolat, O., 2018. Effect of Using Colemanite Waste and Silica Fume as Partial Replacement on the Performance of Metakaolin-Based Geopolymer Mortars. Construction and Building Materials, 176, 271-282.
  • 21. Erdogmus, E., 2014. Combined Effect of Waste Colemanite and Silica Fume on Properties of Cement Mortar. Science and Engineering Composite Materials, 21(3), 369-375.
  • 22. Benaicha, M., Jalbaud, O., Alaoui, A.H., Burtschell, Y., 2015. Correlation Between the Mechanical Behavior and the Ultrasonic Velocity of Fiber-Reinforced Concrete. Construction and Building Materials, 101, 702-709.
  • 23. Yunsheng, Z., Sun, W., Li, Z., Zhou, X., Eddie, Chau, C. 2008. Impact Properties of Geopolymer Based Extrudates Incorporated With Fly Ash and PVA Short Fiber. Construction and Building Materials, 22, 370-383.

Farklı Miktarlarda Kolemanit Atığı ve Silika Dumanı İçeren Cüruf Esaslı Geopolimer Kompozitlerin Farklı Maruz Kalma Koşullarında Dayanımlarının İncelenmesi

Year 2023, , 841 - 849, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377782

Abstract

Bu çalışmada, Geopolimerizasyon reaksiyonu için alkali aktivatör olarak Na₂SiO₃ ve NaOH karıştırılarak oda sıcaklığında kürlenen, farklı yüzdelerde silis dumanı ve kolemanit atığı içeren cüruf bazlı geopolimer harcının mukavemet performansının araştırılması amaçlanmaktadır. Basınç dayanımı, eğilme dayanımı, ultrasonik hızı ve donma-çözülme direnci parametreleri açısından. Bu beş karışım için aynı miktarda öğütülmüş granül yüksek fırın cürufu, kum ve 8M sodyum hidroksit kullanılarak farklı miktarlarda silis dumanı ve kolemanit atığı kullanılarak beş farklı karışım hazırlanmıştır. Macun oranında %20 cüruf, %40 kolemanit atığı ve %40 silis dumanı içeren karışım, kontrol karışımı olarak kullanıldı. Maksimum basınç dayanımı (21,24 MPa, 38,32 MPa), eğilme dayanımı (5,86 MPa, 6,98), donma-çözülme etkisinden kaynaklanan ağırlık kaybı (%0,56) ve ultrasonik hız testi (3082 m/s) sonuçları ise 7. ve 7. sıralarda kaydedildi. Sırasıyla 28. gün. -60 döngüden sonra [1 döngü 90 dakika süreyle (-18 °C) ve 30 dakika süreyle (+4 °C) oluşur] maksimum basınç ve eğilme dayanımı (sırasıyla 40,18 MPa ve 4,92 MPa) olarak gözlemlendi. Sonuçlar, silika dumanı arttıkça mukavemet sonuçlarının tutarlı bir şekilde arttığını gösterdi. Belli bir miktar silis dumanının ilavesi hem mukavemet hem de dayanıklılık açısından ümit verici sonuçlar vermiştir. Genel olarak, bu deneysel çalışmaya göre, hem sürdürülebilirlik hem de mühendislik yönlerini dengelemek amacıyla %30 kolemanit atığı ve %50 silis dumanı kullanımı önerilebilir.

References

  • 1. Malhotra, V.M., 2002. Introduction: Sustainable Development and Concrete Technology. Concrete International; 24(7), 1-22.
  • 2. Yang, K.H., Song, J.K., Song, K.II, 2013. Assessment of CO2 Reduction of Alkali-activated Concrete. Journal of Cleaner Production, 39, 265-272.
  • 3. Madhavi, T.C., Rameshwaran, P.M., 2020. Geopolymer Concrete-The Eco Friendly Alternate to Concrete. NBM and CW Infra Construction and Equipment Magazine.
  • 4. Abdel Wahab, M., Abdel Latif, I., Kohail, M., Almasry, A., 2017. The Use of Wollastonite to Enhance the Mechanical Properties of Mortar Mixes. Construction and Building Materials, 152, 304-309.
  • 5. Mayhoub, O.A., El-Sayed, A.R.N., Yehia, A., Kohail, A., 2021. Properties of Slag Based Geopolymer Reactive Powder Concrete. Ain Shams Engineering Journal, 12, 99-105.
  • 6. Black, L., 2016. Low Clinker Cement as a Sustainable Construction Material. In: Sustainability of Construction Materials (2nd ed), University of Leeds, Leeds, United Kingdom, 416-457.
  • 7. Bernal, S.A., Rodrı´guez, E.D., de Gutie´rrez, R.M., Gordillo, M., Provis, J.L., 2011. Mechanical and Thermal Characterization of Geopolymer Based on Silicate-Activated Metakaolin/Slag Blends. Journal of Material Science, 46, 5477-5486.
  • 8. Davidovits, J., 1991. Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis and Calorimetry, 37, 1633-1656.
  • 9. Rostami, M., Behfarnia, K., 2017. The Effect of Silica Fume on Durability of Alkali-Activated Slag Concrete. Construction and Building Materials, 134, 262-268.
  • 10. Okoye, F.N., Prakasha, S., Singh, N.B., 2017. Durability of Fly Ash Based Geopolymer Concrete in the Presence of Silica Fume. Journal of Cleaner Production, 149, 1062-1067.
  • 11. Okoyea, F.N., Durgaprasada, J., Singh, N.B., 2016. Effect of Silica Fume on The Mechanical Properties of Fly Ash. Ceramics International, 42, 3000-3006.
  • 12. Demir, D., Keles, G., 2006. Radiation Transmission of Concrete Including Boron Waste for 59.54 and 80.99 keV Gamma Rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 245(2), 501-504.
  • 13. Bideci, Ö.S., 2016. The Effect of High Temperature on Lightweight Concretes Produced with Colemanite Coated Pumice Aggregates. Construction and Building Materials, 113, 631-640
  • 14. Abalı, Y., Bayca, S.U., Targan, S., 2006. Evaluation of Blends Tincal Waste, Volcanic Tuff, Bentonite and Fly Ash for use as Cement Admixture. Journal of Hazardous Materials, B131, 126-130.
  • 15. Elbeyli, İ.Y., Derun, E.M., Gülen, J., Pişkin, S., 2003. Thermal Analysis of Borogypsum and Its Effects on The Physical Properties of Portland Cement. Cement and Concrete Research, 33, 1729-1735.
  • 16. Kaplan, M.F., 1989. Concrete Radiation Shielding. Press: John Wiley and Sons, New York, 448.
  • 17. BS EN 196-1, 2016. BSI Standards Publication Methods of Testing Cement Part 1: Determination of Strength.
  • 18. ASTM, 2010. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) 1. Chemical Analysis, (C109/C109M – 11b), 1-9.
  • 19. ASTM C348, 1998. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars ASTM C348, Annu. B. ASTM Stand. 4, 2-7.
  • 20. Uysal, M., Al-Mashhadani, M.M., Aygörmez, Y., Canpolat, O., 2018. Effect of Using Colemanite Waste and Silica Fume as Partial Replacement on the Performance of Metakaolin-Based Geopolymer Mortars. Construction and Building Materials, 176, 271-282.
  • 21. Erdogmus, E., 2014. Combined Effect of Waste Colemanite and Silica Fume on Properties of Cement Mortar. Science and Engineering Composite Materials, 21(3), 369-375.
  • 22. Benaicha, M., Jalbaud, O., Alaoui, A.H., Burtschell, Y., 2015. Correlation Between the Mechanical Behavior and the Ultrasonic Velocity of Fiber-Reinforced Concrete. Construction and Building Materials, 101, 702-709.
  • 23. Yunsheng, Z., Sun, W., Li, Z., Zhou, X., Eddie, Chau, C. 2008. Impact Properties of Geopolymer Based Extrudates Incorporated With Fly Ash and PVA Short Fiber. Construction and Building Materials, 22, 370-383.
There are 23 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Metin Mehmetoğlu 0000-0002-1646-5879

Publication Date October 18, 2023
Published in Issue Year 2023

Cite

APA Mehmetoğlu, M. (2023). Strength Investigation of Slag-Based Geopolymer Composites Incorporating Different Amounts of Colemanite Waste and Silica Fume Under Different Exposure Conditions. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 841-849. https://doi.org/10.21605/cukurovaumfd.1377782