Research Article
BibTex RIS Cite

The Effect of Riblets on the Aerodynamic Performance of NACA 0018 Airfoil

Year 2024, , 119 - 132, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459405

Abstract

In this numerical study, riblets on the airfoil were utilized to enhance the aerodynamic performance of NACA0018 airfoil. Riblets of identical height and base length are strategically placed on the suction surface of the airfoil with varying spacing ratios along the flow direction (x) and chord length (c), specifically x/c = 0.3 and 0.7. Four distinct riblet airfoil models are subjected to computational fluid dynamics (CFD) analysis within an angle of attack range from 0° to 21° at a Reynolds number of Re=1×105. The obtained results are systematically compared with the performance of the plain airfoil. Numerical analyses reveal the significant influence of the spacing ratio on flow control and the overall aerodynamic performance of the airfoil, establishing a direct relationship with riblet spacing. The presence of riblet structures is observed to increase the lift coefficient, concurrently delaying the stall angle up to 19°. Notably, the ribbed structures effectively mitigate the interaction between the laminar separation bubble and trailing edge separation, leading to a reduction in turbulent kinetic energy values.

References

  • 1. Huber, A., Mueller, T., 1987. The Effect of Trip Wire Roughness on the Performance of the Wortmann FX 63-137 Airfoil at Low Reynolds Numbers. Experiments in Fluids, 5, 263-272.
  • 2. Gopalarathnam, A., Broughton, B., McGranahan, B., Selig, M., 2001. Design of Low Reynolds Number Airfoils with Trips. Presented at the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, 2463.
  • 3. Sareen, A., Deters, R.W., Henry, S.P., Selig, M.S., 2011. Drag Reduction Using Riblet Film Applied to Airfoils for Wind Turbines. Presented at the 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, 558.
  • 4. Lee, S.J., Lim, H.C., Han, M., Lee, S.S., 2005. Flow Control of Circular Cylinder with a V-Grooved Micro-Riblet Film. Fluid Dyn. Res., 37(4) , 246-266.
  • 5. Vilkinis, P., Šereika, J., Pedišius, N., Zygmantas, G., 2022. Experimental Study of Flows over Triangular Riblets in Cavity-like Geometry. Experimental Thermal and Fluid Science 134, 110621.
  • 6. Zhang, Y., Chen, H., Fu, S., Dong, W., 2018. Numerical Study of an Airfoil with Riblets Installed Based on Large Eddy Simulation. Aerospace Science and Technology 78, 661-670.
  • 7. Akansu, Y.E., Özmert, M., Firat, E., 2011. Akış Kontrol Çubuğu ile Kare Kesitli Bir Küt Cisim Etrafındaki Akış Kontrolünde Hücum Açısının Girdap Kopma Olayına Etkisi. Isı Bilimi ve Tekniği Dergisi, 31(1), 109-120.
  • 8. Timmer, W., 2008. Two-dimensional low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018. Wind Engineering, 32(6), 525-537.
  • 9. Karasu, I., Genç, M.S., Açıkel, H.H., 2013. Numerical Study on Low Reynolds Number Flows Over an Aerofoil. Journal of Applied Mechanical Engineering, 2(5), 1000131.
  • 10. Açıkel, H.H., Genç, M.S., 2018. Control of Laminar Separation Bubble over Wind Turbine Airfoil Using Partial Flexibility on Suction Surface. Energy 165, 176-190.
  • 11. Güler, A., Seyhan, M., Akansu, Y., 2018. Effect of Signal Modulation of DBD Plasma Actuator on Flow Control around NACA 0015. Isı Bilimi ve Tekniği Dergisi, 38(1), 95-105.
  • 12. Hussei̇n, E., Azzi̇z, H., Rashi̇d, F., 2021. Aerodynamic Study of Slotted Flap for NACA 24012 Airfoil by Dynamic Mesh Techniques and Visualization Flow. Journal of Thermal Engineering, 7(2), 230-239.
  • 13. Ozkan, G.M., Egitmen, H., 2022. Turbulent Structures in an Airfoil Wake at Ultra-low to Low Reynolds Numbers. Experimental Thermal and Fluid Science 134, 110622.
  • 14. Lee, S.J., Jang, Y.G., 2005. Control of Flow Around a NACA 0012 Airfoil with a Micro-riblet Film. Journal of Fluids and Structures, 20(5), 659-672.
  • 15. Wu, Z., Li, S., Liu, M., Wang, S., Yang, H., Liang, X., 2019. Numerical Research on the Turbulent Drag Reduction Mechanism of a Transverse Groove Structure on an Airfoil Blade. Engineering Applications of Computational Fluid Mechanics, 13(1), 1024-1035.
  • 16. Tiainen, J., Grönman, A., Jaatinen-Värri, A., Pyy, L., 2020. Effect of Non-ideally Manufactured Riblets on Airfoil and Wind Turbine Performance. Renewable Energy 155, 79-89.
  • 17. Yang, X., Wang, J., Jiang, B., Li, Z., Xiao, Q., 2021. Numerical Study of Effect of Sawtooth Riblets on Low-Reynolds-Number Airfoil Flow Characteristic and Aerodynamic Performance. Processes, 9(12), 2102.
  • 18. Meena, M.G., Taira, K., Asai, K., 2018. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number. AIAA Journal, 56(4), 1348-1359.
  • 19. Göv, İ., Doğru, M.H., Korkmaz, Ü., 2019. Uçuş Esnasında Değiştirilebilir Kanat Profili Kullanarak NACA 4412’nin Aerodinamik Performansının Artırılması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34(2), 1109-1125.
  • 20. Harris, R.E., 2013. Adaptive Cartesian Immersed Boundary Method for Simulation of Flow over Flexible Geometries. AIAA Journal, 51(1), 53-69.
  • 21. Tang, J., Viieru, D., Shyy, W., 2008. Effects of Reynolds Number and Flapping Kinematics on Hovering Aerodynamics. AIAA Journal, 46(4), 967-976.
  • 22. Walters, D.K., Leylek, J.H., 2004. A New Model for Boundary Layer Transition Using a Single-point RANS Approach. J. Turbomach., 126(1), 193-202.
  • 23. Walters, D.K., Cokljat, D., 2008. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. Journal of Fluids Engineering, 130(12), 121401.
  • 24. Aftab, S.M.A., Mohd Rafie, A.S., Razak, N.A., Ahmad, K.A., 2016. Turbulence Model Selection for Low Reynolds Number Flows. PLoS ONE, 11(4), e0153755.
  • 25. Ahmed, Y.M., Elbatran, A.H., 2018. Numerical Study of the Flow Field Characteristics over a Backward Facing Step using k-kl-ω Turbulence Model: Comparison with Different Models. World Journal of Engineering, 15(1), 173-180.
  • 26. Gaggero, S., Villa, D., 2018. Improving Model Scale Propeller Performance Prediction Using the k-k L-ω Transition Model in OpenFOAM. International Shipbuilding Progress, 65(2), 187-226.
  • 27. Salimipour, E., 2019. A Modification of the k-k-ω Turbulence Model for Simulation of Short and Long Separation Bubbles. Computers & Fluids, 181, 67-76.

Yivlerin NACA 0018 Kanat Profilinin Aerodinamik Performansı Üzerine Etkisi

Year 2024, , 119 - 132, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459405

Abstract

Bu sayısal çalışmada NACA 0018 kanat profilinin aerodinamik performansını arttırmak için yivli yapılar kullanılmıştır. Aynı yüksekliğe ve taban uzunluğuna sahip olan yivler, akış yönü doğrultusunun (x) veter uzunluğuna (c) oranı, x/c = 0,3 ve 0,7 arası boyunca kanat emme yüzeyine farklı boşluk oranları ile yerleştirilmişlerdir. Dört farklı yivli kanat modeli hücum açısının 0o ile 21o arasında ve Reynolds sayısının Re=1×105 değerinde hesaplamalı akışkanlar dinamiği (HAD) ile analiz edilmiştir. Yivli yapıların etkisini göstermek için elde edilen sonuçlar yalın kanat modeli ile kıyaslamalı olarak sunulmuştur. Sayısal çözümlemelerden elde edilen veriler yiv boşluk oranının akış kontrolü üzerinde etkili olduğunu ve kanat aerodinamik performansının yiv boşluk oranı ilişkili olduğunu ortaya koymuştur. Yivli kanat modelinin taşıma katsayısını artırdığını ve tutunma kaybı açısını 19o’e kadar ötelediği gözlemlenmiştir. Ayrıca yivli yapıların laminer ayrılma kabarcığının ve firar kenarı yarılması etkileşimini bastırdığını böylelikle türbülans kinetik enerji değerlerini azalttığı gözlemlenmiştir.

References

  • 1. Huber, A., Mueller, T., 1987. The Effect of Trip Wire Roughness on the Performance of the Wortmann FX 63-137 Airfoil at Low Reynolds Numbers. Experiments in Fluids, 5, 263-272.
  • 2. Gopalarathnam, A., Broughton, B., McGranahan, B., Selig, M., 2001. Design of Low Reynolds Number Airfoils with Trips. Presented at the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, 2463.
  • 3. Sareen, A., Deters, R.W., Henry, S.P., Selig, M.S., 2011. Drag Reduction Using Riblet Film Applied to Airfoils for Wind Turbines. Presented at the 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, 558.
  • 4. Lee, S.J., Lim, H.C., Han, M., Lee, S.S., 2005. Flow Control of Circular Cylinder with a V-Grooved Micro-Riblet Film. Fluid Dyn. Res., 37(4) , 246-266.
  • 5. Vilkinis, P., Šereika, J., Pedišius, N., Zygmantas, G., 2022. Experimental Study of Flows over Triangular Riblets in Cavity-like Geometry. Experimental Thermal and Fluid Science 134, 110621.
  • 6. Zhang, Y., Chen, H., Fu, S., Dong, W., 2018. Numerical Study of an Airfoil with Riblets Installed Based on Large Eddy Simulation. Aerospace Science and Technology 78, 661-670.
  • 7. Akansu, Y.E., Özmert, M., Firat, E., 2011. Akış Kontrol Çubuğu ile Kare Kesitli Bir Küt Cisim Etrafındaki Akış Kontrolünde Hücum Açısının Girdap Kopma Olayına Etkisi. Isı Bilimi ve Tekniği Dergisi, 31(1), 109-120.
  • 8. Timmer, W., 2008. Two-dimensional low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018. Wind Engineering, 32(6), 525-537.
  • 9. Karasu, I., Genç, M.S., Açıkel, H.H., 2013. Numerical Study on Low Reynolds Number Flows Over an Aerofoil. Journal of Applied Mechanical Engineering, 2(5), 1000131.
  • 10. Açıkel, H.H., Genç, M.S., 2018. Control of Laminar Separation Bubble over Wind Turbine Airfoil Using Partial Flexibility on Suction Surface. Energy 165, 176-190.
  • 11. Güler, A., Seyhan, M., Akansu, Y., 2018. Effect of Signal Modulation of DBD Plasma Actuator on Flow Control around NACA 0015. Isı Bilimi ve Tekniği Dergisi, 38(1), 95-105.
  • 12. Hussei̇n, E., Azzi̇z, H., Rashi̇d, F., 2021. Aerodynamic Study of Slotted Flap for NACA 24012 Airfoil by Dynamic Mesh Techniques and Visualization Flow. Journal of Thermal Engineering, 7(2), 230-239.
  • 13. Ozkan, G.M., Egitmen, H., 2022. Turbulent Structures in an Airfoil Wake at Ultra-low to Low Reynolds Numbers. Experimental Thermal and Fluid Science 134, 110622.
  • 14. Lee, S.J., Jang, Y.G., 2005. Control of Flow Around a NACA 0012 Airfoil with a Micro-riblet Film. Journal of Fluids and Structures, 20(5), 659-672.
  • 15. Wu, Z., Li, S., Liu, M., Wang, S., Yang, H., Liang, X., 2019. Numerical Research on the Turbulent Drag Reduction Mechanism of a Transverse Groove Structure on an Airfoil Blade. Engineering Applications of Computational Fluid Mechanics, 13(1), 1024-1035.
  • 16. Tiainen, J., Grönman, A., Jaatinen-Värri, A., Pyy, L., 2020. Effect of Non-ideally Manufactured Riblets on Airfoil and Wind Turbine Performance. Renewable Energy 155, 79-89.
  • 17. Yang, X., Wang, J., Jiang, B., Li, Z., Xiao, Q., 2021. Numerical Study of Effect of Sawtooth Riblets on Low-Reynolds-Number Airfoil Flow Characteristic and Aerodynamic Performance. Processes, 9(12), 2102.
  • 18. Meena, M.G., Taira, K., Asai, K., 2018. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number. AIAA Journal, 56(4), 1348-1359.
  • 19. Göv, İ., Doğru, M.H., Korkmaz, Ü., 2019. Uçuş Esnasında Değiştirilebilir Kanat Profili Kullanarak NACA 4412’nin Aerodinamik Performansının Artırılması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34(2), 1109-1125.
  • 20. Harris, R.E., 2013. Adaptive Cartesian Immersed Boundary Method for Simulation of Flow over Flexible Geometries. AIAA Journal, 51(1), 53-69.
  • 21. Tang, J., Viieru, D., Shyy, W., 2008. Effects of Reynolds Number and Flapping Kinematics on Hovering Aerodynamics. AIAA Journal, 46(4), 967-976.
  • 22. Walters, D.K., Leylek, J.H., 2004. A New Model for Boundary Layer Transition Using a Single-point RANS Approach. J. Turbomach., 126(1), 193-202.
  • 23. Walters, D.K., Cokljat, D., 2008. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. Journal of Fluids Engineering, 130(12), 121401.
  • 24. Aftab, S.M.A., Mohd Rafie, A.S., Razak, N.A., Ahmad, K.A., 2016. Turbulence Model Selection for Low Reynolds Number Flows. PLoS ONE, 11(4), e0153755.
  • 25. Ahmed, Y.M., Elbatran, A.H., 2018. Numerical Study of the Flow Field Characteristics over a Backward Facing Step using k-kl-ω Turbulence Model: Comparison with Different Models. World Journal of Engineering, 15(1), 173-180.
  • 26. Gaggero, S., Villa, D., 2018. Improving Model Scale Propeller Performance Prediction Using the k-k L-ω Transition Model in OpenFOAM. International Shipbuilding Progress, 65(2), 187-226.
  • 27. Salimipour, E., 2019. A Modification of the k-k-ω Turbulence Model for Simulation of Short and Long Separation Bubbles. Computers & Fluids, 181, 67-76.
There are 27 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering (Other)
Journal Section Articles
Authors

Emre Güler 0000-0001-7337-8678

Engin Pınar 0000-0002-7484-8616

Tahir Durhasan 0000-0001-5212-9170

Publication Date March 28, 2024
Submission Date March 12, 2024
Acceptance Date March 28, 2024
Published in Issue Year 2024

Cite

APA Güler, E., Pınar, E., & Durhasan, T. (2024). The Effect of Riblets on the Aerodynamic Performance of NACA 0018 Airfoil. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 119-132. https://doi.org/10.21605/cukurovaumfd.1459405