Research Article
BibTex RIS Cite

A Numerical Modelling of V-Bending

Year 2024, , 545 - 554, 11.07.2024
https://doi.org/10.21605/cukurovaumfd.1514639

Abstract

In the study, a sheet metal is bent to analyze the punch force, Von Misses stresses and plastic strains on the metal for friction and non-friction cases. The 2-D v-bending forming is modelled in program. Model includes a die, a punch and a blank. Solid mechanics physics interface has been used in program. The analyze has been run with friction and non-friction cases for different strain-hardening exponents and sheet metal thicknesses. The sheet lengths and widths are 60 mm. Thickness of sheet metal is varied between 1.0 to 3.0 mm. The strain hardening exponent has been altered from 0.1 to 0.5. It is computed that the punch force has been increased as thickness of sheet metal and strain hardening exponent decreases. The achieved maximum punch force is at values of 1.12x105 N, 3.75x105 N and 4.05x105 N for thickness of 1.0-mm, 2.0-mm and 3.0-mm respectively when strain hardening exponent is 0.3. Also, as the strain hardening exponent increases from 0.1 to 0.5, the maximum punch force lowers from 2.03x105 N to 8.08x104 N for 1 mm thickness at friction case. Moreover, the maximum punch force reached up to 9.13x104 N for 1 mm thick sheet metal at non-friction case when the strain hardening exponent is 0.1. It is concluded that the maximum Von Misses stress has been calculated at the tip of sheet metal.

References

  • 1. Miksza, M., Bohdal Ł., Kośka K., 2021. Numerical Analysis of the V-die Bending Process of the Zinc Coated DC01 Steel. Journal of Mechanical and Energy Engineering, 5(2), 87-94.
  • 2. Purwadi, W, Bandanadjaja, B., Idamayanti, D., 2020. Shifting of the Neutral Line at a V-Bending Process of AISI 1015 Steel Plate. In Journal of Physics: Conference Series, 1450(1), 012126.
  • 3. Ben Salem, C., Meslameni, W., 2022. A Numerical Investigation on the Springback in Air V-bending of Aluminum 1050A. International Journal of Research in Industrial Engineering, 11(2), 119-133.
  • 4. Golovashchenko, S.F., 2008. Quality of Trimming and Its Effect on Stretch Flanging of Automotive Panels. Journal of Materials Engineering and Performance, 17, 316-325.
  • 5. Qian, Z., Zhao, Y., Wang, C., Liu, S., Xiong, Z., Meehan, P.A., Daniel, W.J.T., Ding, S., 2021. Numerical and Experimental Investigation of the Bending Zone in Free U-bending. Journal of Manufacturing Science and Engineering, 143(9), 1-32.
  • 6. Li, Y., Liu, Y., Liu, M., Liu, H., 2022. Sensitivity Analysis for Springback of QSTE700 High-strength Steel Rectangular Welded Tube to Material Parameters in Rotary Draw Bending. The International Journal of Advanced Manufacturing Technology, 122(3-4), 1747-1762.
  • 7. Hilditch, T., Atwell, D., Easton, M., Barnett, M., 2009. Performance of Wrought Aluminium and Magnesium Alloy Tubes in Three-point Bending. Materials & Design, 30(7), 2316-2322.
  • 8. Le Maoût, N., Manach, P.Y., Thuillier, S., 2012. Influence of Prestrain on the Numerical Simulation of the Roller Hemming Process. Journal of Materials Processing Technology, 212(2), 450-457.
  • 9. Lin, G., Iyer, K., Hu, S.J., Cai, W., Marin, S.P., 2005. A Computational Design-of-Experiments Study of Hemming Processes for Automotive Aluminium Alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(10), 711-722.
  • 10. Kim, Y., Kang, D.W., Ku, T.W., Kim, J., Kang, B.S., 2007. Multi Stage Seaming Process for Large Tubular Mechanical Bonded Structure. In Key Engineering Materials, 340, 1437-1442.
  • 11. Weiss, M., Marnette, J., Wolfram, P., Larrañaga, J., Hodgson, P.D., 2012. Comparison of Bending of Automotive Steels in Roll Forming and in a V-die. In Key Engineering Materials, 504, 797-802.
  • 12. Şen, N., Taşdemir, V., 2021. Experimental and Numerical Investigation of the Springback Behaviour of CP800 Sheet After the V-bending Process. Ironmaking & Steelmaking, 48(7), 811-818.
  • 13. Adnan, A.F., Abdullah, A.B., Samad, Z., 2017. Study of Springback Pattern of Non-uniform Thickness Section Based on V-bending Experiment. Journal of Mechanical Engineering and Sciences, 11(3), 2845-2855.
  • 14. Sharma, P.K., Gautam, V., Agrawal, A.K., 2022. Investigations on Effect of Bending Radius on Springback Behaviour of Three-ply Clad Sheet. Materials Today: Proceedings, 62, 1651-1657.
  • 15. Thipprakmas, S., Sontamino, A., 2022. Spring-Back Characteristics on Bent Holed Parts in V-Die Bending Process. Advances in Materials Science and Engineering.
  • 16. Karalar, M., Bayramoğlu, M., 2022. Combined Impacts of Thickness and Bending Angle on Springback of 1000DP Steel Sheets. Ironmaking & Steelmaking, 49(7), 693-698.
  • 17. Liu, Z., Ma, L., Meng, Z., Liu, P., Du, Y., 2021. Effect of Yield Criterion and Variable Elastic Modulus on Springback Prediction of Ti-6Al-4V Sheet V-shaped Bending. The International Journal of Advanced Manufacturing Technology, 116, 1925-1936.
  • 18. Kim, Y., Gu. G.H., Kim, R.E., Seo, M.H., Kim, H.S., 2022. Deformation Behavior of Lightweight Clad Sheet: Experiment and Modeling. Materials Science and Engineering: A, 852, 143666.
  • 19. Slota, J., Jurčišin, M., 2012. Experimental and Numerical Prediction of Springback in V-Bending of Anisotropic Sheet Metals for Automotive Industry. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika, 84 [284](3), 55-68.
  • 20. Cao, A., Li, W., Wang, J., Fu, J., 2022. Influence of Stamping Parameters on Stamping Characteristics of SAF2205 Bidirectional Stainless Steel. SN Applied Sciences, 4(2), 35.
  • 21. Dhilip, A., Archana, A., Brindha, M., Kanmani, M., Rajeshwari, B.P., RubaDharshini, S., 2021. Bending Stress Analysis in Sheet Metal Forming Process. Nveo-Natural Volatiles & Essential Oils Journal, 3064-3075.
  • 22. Ozdemir, A.O., 2023. Investigation of the Spring-back Phenomenon in Two-dimensional Bending of Continuous Glass Fiber-Reinforced Polyamide Composite Sheets. Journal of Composite Materials, 00219983221148093.
  • 23. Li, G., He, Z., Ma, J., Yang, H., Li, H., 2021. Springback Analysis for Warm Bending of Titanium Tube Based on Coupled Thermal-Mechanical Simulation. Materials, 14(17), 5044.
  • 24. Pritima, D. Veerappan, G. Patel, V.D., Parthasarathy, N.R., 2022. Analysis of Spring Back Behaviour During Bending of AISI 1045 Sheet Metal. Materials Today: Proceedings, 59, 1575-1580.
  • 25. Krinninger, M., Opritescu, D., Golle, R., Volk, W., 2016. Experimental Investigation of the Influence of Punch Velocity on the Springback Behavior and the Flat Length in free Bending. Procedia Cirp, 41, 1066-1071.
  • 26. Nakajima, K., Utsumi, N., Yoshida, M., 2013. Suppressing Method of the Cross Section Deformation for Extruded Square Tubes in Press Bending. International Journal of Precision Engineering and Manufacturing, 14, 965-970.
  • 27. Gupta, T.R., Payal, H.S., 2016. Investigative Study on Bending and Spring Back of Electro Galvanized Steel. In 5th International Symposium on Fusion of Science & Technology, 18-22.
  • 28. Tozuka, H., Watari, H., Toshio, H.A.G.A. 2024. Improving Room Temperature Formability of Twin-roll Cast Mg-Al-Zn-Sn Alloy by Repeated Bending. Materials Research Proceedings, 41, 2499-2505.
  • 29. Örnekci, A.O., Ekşi, S., 2024. Experimental Study on Springback Properties of 6061 Aluminum in V-Bending. Sakarya University Journal of Science, 28(3), 646-653.
  • 30. Sofia, E.P.C., Gabriela, V.I.N.C.Z.E., André, D.P.P., Carmen, B.M., 2024. Bending of Third Generation Steel: Experimental and Numerical Approach, 41, 1196-1205.
  • 31. Groover M.P. 2007. Fundamental of Modern Manufacturing, 3rd Edition, John Wiley & Sons, Inc.
  • 32. William, D., Calister, Jr., 2001. Fundamentals of Material Science and Engineering: An Introduction. 5th Edition, John Wiley & Sons, Inc.
  • 33. Hollomon, H., 1945. Transactions of Metallurgical Society of AIME, 162, 268.
  • 34. Ludwigson, D.C., 1971. Metallurgical Transactions. 2, 2825.

V- Bükmenin Sayısal Modellenmesi

Year 2024, , 545 - 554, 11.07.2024
https://doi.org/10.21605/cukurovaumfd.1514639

Abstract

Çalışmada, sürtünmeli ve sürtünmesiz durumlar için zımba kuvvetini, Von Misses gerilmelerini ve metal üzerindeki plastik gerinimleri analiz etmek için bir metal levha bükülmüştür. 2 boyutlu v-bükme şekillendirme programda modellenmiştir. Model bir kalıp, bir zımba ve bir sac levhadan oluşmaktadır. Programda katı mekanik fiziği arayüzü kullanılmıştır. Analiz; farklı pekleşme üsteli ve sac kalınlıkları için sürtünmeli ve sürtünmesiz ortam koşullarında yürütülmüştür. Sac uzunlukları ve genişlikleri 60 mm'dir. Sac kalınlıkları 1,0 ila 3,0 mm arasında değişmektedir. Pekleşme üsteli 0,1'den 0,5'e kadar değiştirilmiştir. Sac kalınlığı ve pekleşme üsteli azaldıkça zımba kuvvetinin arttığı hesaplanmıştır. Elde edilen maksimum zımba kuvveti, pekleşme üsteli 0.3 olduğunda 1,0 mm, 2,0 mm ve 3,0 mm kalınlık için sırasıyla 1.12x105 N, 3.75x105 N and 4.05x105 N değerlerindedir. Ayrıca sürtünmeli durumda 1 mm kalınlık için pekleşme üsteli 0,1'den 0,5'e arttıkça maksimum zımba kuvveti 1.49x105 N to 8.08x104 N'ye düşer. Dahası, pekleşme üsteli 0.1 iken maksimum zımba kuvveti sürtünmesiz durumda 1 mm kalınlığındaki sac için 9.13x104 N değerine ulaşmıştır. Maksimum Von Misses gerilmesinin sacın ucunda hesaplandığı sonucuna varılmıştır.

References

  • 1. Miksza, M., Bohdal Ł., Kośka K., 2021. Numerical Analysis of the V-die Bending Process of the Zinc Coated DC01 Steel. Journal of Mechanical and Energy Engineering, 5(2), 87-94.
  • 2. Purwadi, W, Bandanadjaja, B., Idamayanti, D., 2020. Shifting of the Neutral Line at a V-Bending Process of AISI 1015 Steel Plate. In Journal of Physics: Conference Series, 1450(1), 012126.
  • 3. Ben Salem, C., Meslameni, W., 2022. A Numerical Investigation on the Springback in Air V-bending of Aluminum 1050A. International Journal of Research in Industrial Engineering, 11(2), 119-133.
  • 4. Golovashchenko, S.F., 2008. Quality of Trimming and Its Effect on Stretch Flanging of Automotive Panels. Journal of Materials Engineering and Performance, 17, 316-325.
  • 5. Qian, Z., Zhao, Y., Wang, C., Liu, S., Xiong, Z., Meehan, P.A., Daniel, W.J.T., Ding, S., 2021. Numerical and Experimental Investigation of the Bending Zone in Free U-bending. Journal of Manufacturing Science and Engineering, 143(9), 1-32.
  • 6. Li, Y., Liu, Y., Liu, M., Liu, H., 2022. Sensitivity Analysis for Springback of QSTE700 High-strength Steel Rectangular Welded Tube to Material Parameters in Rotary Draw Bending. The International Journal of Advanced Manufacturing Technology, 122(3-4), 1747-1762.
  • 7. Hilditch, T., Atwell, D., Easton, M., Barnett, M., 2009. Performance of Wrought Aluminium and Magnesium Alloy Tubes in Three-point Bending. Materials & Design, 30(7), 2316-2322.
  • 8. Le Maoût, N., Manach, P.Y., Thuillier, S., 2012. Influence of Prestrain on the Numerical Simulation of the Roller Hemming Process. Journal of Materials Processing Technology, 212(2), 450-457.
  • 9. Lin, G., Iyer, K., Hu, S.J., Cai, W., Marin, S.P., 2005. A Computational Design-of-Experiments Study of Hemming Processes for Automotive Aluminium Alloys. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(10), 711-722.
  • 10. Kim, Y., Kang, D.W., Ku, T.W., Kim, J., Kang, B.S., 2007. Multi Stage Seaming Process for Large Tubular Mechanical Bonded Structure. In Key Engineering Materials, 340, 1437-1442.
  • 11. Weiss, M., Marnette, J., Wolfram, P., Larrañaga, J., Hodgson, P.D., 2012. Comparison of Bending of Automotive Steels in Roll Forming and in a V-die. In Key Engineering Materials, 504, 797-802.
  • 12. Şen, N., Taşdemir, V., 2021. Experimental and Numerical Investigation of the Springback Behaviour of CP800 Sheet After the V-bending Process. Ironmaking & Steelmaking, 48(7), 811-818.
  • 13. Adnan, A.F., Abdullah, A.B., Samad, Z., 2017. Study of Springback Pattern of Non-uniform Thickness Section Based on V-bending Experiment. Journal of Mechanical Engineering and Sciences, 11(3), 2845-2855.
  • 14. Sharma, P.K., Gautam, V., Agrawal, A.K., 2022. Investigations on Effect of Bending Radius on Springback Behaviour of Three-ply Clad Sheet. Materials Today: Proceedings, 62, 1651-1657.
  • 15. Thipprakmas, S., Sontamino, A., 2022. Spring-Back Characteristics on Bent Holed Parts in V-Die Bending Process. Advances in Materials Science and Engineering.
  • 16. Karalar, M., Bayramoğlu, M., 2022. Combined Impacts of Thickness and Bending Angle on Springback of 1000DP Steel Sheets. Ironmaking & Steelmaking, 49(7), 693-698.
  • 17. Liu, Z., Ma, L., Meng, Z., Liu, P., Du, Y., 2021. Effect of Yield Criterion and Variable Elastic Modulus on Springback Prediction of Ti-6Al-4V Sheet V-shaped Bending. The International Journal of Advanced Manufacturing Technology, 116, 1925-1936.
  • 18. Kim, Y., Gu. G.H., Kim, R.E., Seo, M.H., Kim, H.S., 2022. Deformation Behavior of Lightweight Clad Sheet: Experiment and Modeling. Materials Science and Engineering: A, 852, 143666.
  • 19. Slota, J., Jurčišin, M., 2012. Experimental and Numerical Prediction of Springback in V-Bending of Anisotropic Sheet Metals for Automotive Industry. Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika, 84 [284](3), 55-68.
  • 20. Cao, A., Li, W., Wang, J., Fu, J., 2022. Influence of Stamping Parameters on Stamping Characteristics of SAF2205 Bidirectional Stainless Steel. SN Applied Sciences, 4(2), 35.
  • 21. Dhilip, A., Archana, A., Brindha, M., Kanmani, M., Rajeshwari, B.P., RubaDharshini, S., 2021. Bending Stress Analysis in Sheet Metal Forming Process. Nveo-Natural Volatiles & Essential Oils Journal, 3064-3075.
  • 22. Ozdemir, A.O., 2023. Investigation of the Spring-back Phenomenon in Two-dimensional Bending of Continuous Glass Fiber-Reinforced Polyamide Composite Sheets. Journal of Composite Materials, 00219983221148093.
  • 23. Li, G., He, Z., Ma, J., Yang, H., Li, H., 2021. Springback Analysis for Warm Bending of Titanium Tube Based on Coupled Thermal-Mechanical Simulation. Materials, 14(17), 5044.
  • 24. Pritima, D. Veerappan, G. Patel, V.D., Parthasarathy, N.R., 2022. Analysis of Spring Back Behaviour During Bending of AISI 1045 Sheet Metal. Materials Today: Proceedings, 59, 1575-1580.
  • 25. Krinninger, M., Opritescu, D., Golle, R., Volk, W., 2016. Experimental Investigation of the Influence of Punch Velocity on the Springback Behavior and the Flat Length in free Bending. Procedia Cirp, 41, 1066-1071.
  • 26. Nakajima, K., Utsumi, N., Yoshida, M., 2013. Suppressing Method of the Cross Section Deformation for Extruded Square Tubes in Press Bending. International Journal of Precision Engineering and Manufacturing, 14, 965-970.
  • 27. Gupta, T.R., Payal, H.S., 2016. Investigative Study on Bending and Spring Back of Electro Galvanized Steel. In 5th International Symposium on Fusion of Science & Technology, 18-22.
  • 28. Tozuka, H., Watari, H., Toshio, H.A.G.A. 2024. Improving Room Temperature Formability of Twin-roll Cast Mg-Al-Zn-Sn Alloy by Repeated Bending. Materials Research Proceedings, 41, 2499-2505.
  • 29. Örnekci, A.O., Ekşi, S., 2024. Experimental Study on Springback Properties of 6061 Aluminum in V-Bending. Sakarya University Journal of Science, 28(3), 646-653.
  • 30. Sofia, E.P.C., Gabriela, V.I.N.C.Z.E., André, D.P.P., Carmen, B.M., 2024. Bending of Third Generation Steel: Experimental and Numerical Approach, 41, 1196-1205.
  • 31. Groover M.P. 2007. Fundamental of Modern Manufacturing, 3rd Edition, John Wiley & Sons, Inc.
  • 32. William, D., Calister, Jr., 2001. Fundamentals of Material Science and Engineering: An Introduction. 5th Edition, John Wiley & Sons, Inc.
  • 33. Hollomon, H., 1945. Transactions of Metallurgical Society of AIME, 162, 268.
  • 34. Ludwigson, D.C., 1971. Metallurgical Transactions. 2, 2825.
There are 34 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Ergin Kosa 0000-0002-4607-4115

Publication Date July 11, 2024
Published in Issue Year 2024

Cite

APA Kosa, E. (2024). A Numerical Modelling of V-Bending. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 545-554. https://doi.org/10.21605/cukurovaumfd.1514639