Research Article
BibTex RIS Cite

Examination of Thermal Dispersion and Airflow within a Refrigerator

Year 2024, , 695 - 707, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560131

Abstract

A blast freezer, characterized by its capability to diminish the core temperature of cooked food from 100 °C to -18 °C within 270 minutes, constitutes a critical component in this preservation process. This study endeavors to model a blast freezer system employing Computational Fluid Dynamics (CFD) methodologies, subsequently validating the CFD analysis through empirical investigations. The pressure-based k-ε turbulence model is employed to solve the Navier-Stokes and energy equations. The ensuing analyses encompass airflow assessments and temperature evaluations for unloaded and fully loaded blast freezers. Results gleaned from experiments and analyses indicate a temperature escalation within the cabin as it approaches the enclosure walls. Maximum velocities of 31.1 m/s and 26.9 m/s are recorded for unloaded and fully loaded freezers. The average disparity between the CFD and experimental models is computed as -0.7 °C, signifying a close alignment between the simulated and actual outcomes.

References

  • 1. Rodezno, E., Sundararajan, S., Solval, K., Chotiko, A., Li, J., Zhang, J., Alfaro, L., Bankston, D., Sathivel, S., 2013. Cryogenic and air blast freezing techniques and their effect on the quality of catfish fillets. Food Science and Technology, 54, 377-382.
  • 2. Dampsey, P., Bansal, P., 2012. The art of air-blast freezing design and efficiency considerations. Applied Thermal Engineering Journal, 41, 71-83.
  • 3. Badri, D., Toublanc, C., Rouaud, O., Havet, M., 2021. Review on frosting, defrosting and frost management techniques in industrial food freezers. Renewable and Sustainable Energy Reviews, 151, 111545.
  • 4. Angane, M., Guptab, S., Fletcher, G., Summers, G., Hedderley, D., Quek, S., 2020. Effect of air blast freezing and frozen storage on Escherichia coli survival, n-3 polyunsaturated fatty acid concentration and microstructure of Greenshell mussels. Food Control, 115, 107284.
  • 5. Tan, F., Fok, S., 2009. Freezing of tilapia fillets in an air blast freezer. International Journal of Food Science and Technology, 44, 1619-1625.
  • 6. Pakdil, M., 2011. Investigation of temperature distribution and airflow in the freezer of no frost problem. Master's Thesis, Department of Mechanical Engineering, Istanbul Technical University, 95.
  • 7. Alonso, M., Andersen, T., 2011. Improvements of airflow distribution in a freezing tunnel using Airpak. 11th International Congress on Engineering and Food, New York, USA.
  • 8. Shih, T., Liou, W., Shabbir, A., Yang, Z., Zhu, J., 2011. Numerical study of heat transfer performance on the air side of evaporator for a domestic freezer. Computer Fluids, 24(13), 227-238.
  • 9. Chourasia, M., Goswami, T., 2007. Steady state CFD modeling of airflow, heat transfer and moisture loss in a commercial potato cold store. International Journal of Refrigeration, 30, 672-689.
  • 10. Amara, S., Laguerre, O., Mojtabi, C., Latrigue, B., Flick, D., 2008. PIV measurement of the flow field in a domestic freezer model comparison with 3D simulations. International Journal of Refrigeration, 31, 1328-1340.
  • 11. Ding, G., Qiao, H., Lu, Z, 2004. Ways to improve thermal uniformity inside a freezer. Applied Thermal Engineering, 24, 1827-1840.
  • 12. Mirade, P., Kondjoyan, A., Daudin, J., 2012. Three-dimensional CFD calculations for designing large food chillers. Computers and Electronics in Agriculture Journal, 34, 67-88.
  • 13. Lacerda, V., Melo, C., Barbosa, J., Duarte, P., 2015. Measurements of the air flow field in the freezer compartment of a top mount no-frost domestic freezer: the effect of temperature. International Journal of Refrigeration, 28, 774-783.
  • 14. Poyraz, O, 2011. Investigation of the parameters affecting the working rate in the freezer compartment of freezers. Master's Thesis, Department of Mechanical Engineering, Y.T.U., 125.
  • 15. Panchal, R., Jadhav, G., Shinde, G., Dhatunde, S., Nikam, N., Mane, P., 2017. Design development of blast freezer. International Advanced Research Journal in Science, Engineering and Technology, 4(1), 142-159.
  • 16. Tang, Z., Wu, C., Liu, C., Xu, X., Liu, J., 2021. Thermodynamic analysis and comparison of a novel dual-ejector based organic flash combined power and refrigeration cycle driven by the low-grade heat source. Energy Conversion and Management, 239, 114205.
  • 17. Boonsumrej, S., Chaiwanichsiri, S., Tantratian, S., Suzuki, T., Takai, R., 2017. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. Journal of Food Engineering, 80, 292-299.
  • 18. Chourot, J., Macchi, H., Fournaison, L., Guilpart, J., 2003. Technical and economical model for the freezing cost comparison of immersion, cryomechanical and air blast freezing processes. Energy Conversion and Management, 44, 559-571.
  • 19. ANSYS, 2016, Inc. ANSYS Fluent V16 User’s Guide.
  • 20. Jiang, X., Zhou, C., Su, J., Jin, G., Shen, R., 2023. Injection parameter design to improve the high-speed gear heat dissipation: CFD simulation and regression orthogonal experiment. Simulation Modelling Practice and Theory, 128, 102795.
  • 21. Chen, J., Zheng, Y., Zhang, L., He, G., Zou, Y., Xiao, Z., 2022. Optimization of geometric parameters of hydraulic turbine runner in turbine mode based on the orthogonal test method and CFD. Energy Reports, 8, 14476-14487.

Şok Dondurucunun Isı Dağılımı ve Hava Akışının İncelenmesi

Year 2024, , 695 - 707, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560131

Abstract

Pişmiş gıdanın çekirdek sıcaklığını 270 dakika içinde 100 °C'den -18 °C'ye düşürme kapasitesiyle karakterize edilen bir şok dondurucu, muhafaza sürecinin kritik bir bileşenini oluşturur. Bu çalışma, hesaplamalı akışkanlar dinamiği metodolojilerini kullanarak bir şok dondurucu sistemini modellemeyi ve ardından deneysel araştırmalarla CFD analizlerini doğrulamayı amaçlamaktadır. Çalışmadaki nümerik analizlerde k-ε türbülans modeli kullanılmıştır. Hem boş hem de tam yükle dolu olan şok dondurucular için deneysel ve CFD hesaplamaları yapılarak elde edilen sonuçlar birbiriyle karşılaştırılmıştır. Deneylerden ve analizlerden elde edilen sonuçlar, kabin duvarlarına yaklaştıkça kabin içindeki sıcaklığın arttığını göstermektedir. Boş ve tam dolu dondurucular için maksimum hızlar sırasıyla 31,1 m/s ve 26,9 m/s olarak elde edilmiştir. CFD ve deneysel modeller arasındaki ortalama farklılık -0,7 °C olarak hesaplanmıştır. Bu durum da, simüle edilen ve gerçek sonuçlar arasında yakın bir uyum olduğunu gösterir.

References

  • 1. Rodezno, E., Sundararajan, S., Solval, K., Chotiko, A., Li, J., Zhang, J., Alfaro, L., Bankston, D., Sathivel, S., 2013. Cryogenic and air blast freezing techniques and their effect on the quality of catfish fillets. Food Science and Technology, 54, 377-382.
  • 2. Dampsey, P., Bansal, P., 2012. The art of air-blast freezing design and efficiency considerations. Applied Thermal Engineering Journal, 41, 71-83.
  • 3. Badri, D., Toublanc, C., Rouaud, O., Havet, M., 2021. Review on frosting, defrosting and frost management techniques in industrial food freezers. Renewable and Sustainable Energy Reviews, 151, 111545.
  • 4. Angane, M., Guptab, S., Fletcher, G., Summers, G., Hedderley, D., Quek, S., 2020. Effect of air blast freezing and frozen storage on Escherichia coli survival, n-3 polyunsaturated fatty acid concentration and microstructure of Greenshell mussels. Food Control, 115, 107284.
  • 5. Tan, F., Fok, S., 2009. Freezing of tilapia fillets in an air blast freezer. International Journal of Food Science and Technology, 44, 1619-1625.
  • 6. Pakdil, M., 2011. Investigation of temperature distribution and airflow in the freezer of no frost problem. Master's Thesis, Department of Mechanical Engineering, Istanbul Technical University, 95.
  • 7. Alonso, M., Andersen, T., 2011. Improvements of airflow distribution in a freezing tunnel using Airpak. 11th International Congress on Engineering and Food, New York, USA.
  • 8. Shih, T., Liou, W., Shabbir, A., Yang, Z., Zhu, J., 2011. Numerical study of heat transfer performance on the air side of evaporator for a domestic freezer. Computer Fluids, 24(13), 227-238.
  • 9. Chourasia, M., Goswami, T., 2007. Steady state CFD modeling of airflow, heat transfer and moisture loss in a commercial potato cold store. International Journal of Refrigeration, 30, 672-689.
  • 10. Amara, S., Laguerre, O., Mojtabi, C., Latrigue, B., Flick, D., 2008. PIV measurement of the flow field in a domestic freezer model comparison with 3D simulations. International Journal of Refrigeration, 31, 1328-1340.
  • 11. Ding, G., Qiao, H., Lu, Z, 2004. Ways to improve thermal uniformity inside a freezer. Applied Thermal Engineering, 24, 1827-1840.
  • 12. Mirade, P., Kondjoyan, A., Daudin, J., 2012. Three-dimensional CFD calculations for designing large food chillers. Computers and Electronics in Agriculture Journal, 34, 67-88.
  • 13. Lacerda, V., Melo, C., Barbosa, J., Duarte, P., 2015. Measurements of the air flow field in the freezer compartment of a top mount no-frost domestic freezer: the effect of temperature. International Journal of Refrigeration, 28, 774-783.
  • 14. Poyraz, O, 2011. Investigation of the parameters affecting the working rate in the freezer compartment of freezers. Master's Thesis, Department of Mechanical Engineering, Y.T.U., 125.
  • 15. Panchal, R., Jadhav, G., Shinde, G., Dhatunde, S., Nikam, N., Mane, P., 2017. Design development of blast freezer. International Advanced Research Journal in Science, Engineering and Technology, 4(1), 142-159.
  • 16. Tang, Z., Wu, C., Liu, C., Xu, X., Liu, J., 2021. Thermodynamic analysis and comparison of a novel dual-ejector based organic flash combined power and refrigeration cycle driven by the low-grade heat source. Energy Conversion and Management, 239, 114205.
  • 17. Boonsumrej, S., Chaiwanichsiri, S., Tantratian, S., Suzuki, T., Takai, R., 2017. Effects of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. Journal of Food Engineering, 80, 292-299.
  • 18. Chourot, J., Macchi, H., Fournaison, L., Guilpart, J., 2003. Technical and economical model for the freezing cost comparison of immersion, cryomechanical and air blast freezing processes. Energy Conversion and Management, 44, 559-571.
  • 19. ANSYS, 2016, Inc. ANSYS Fluent V16 User’s Guide.
  • 20. Jiang, X., Zhou, C., Su, J., Jin, G., Shen, R., 2023. Injection parameter design to improve the high-speed gear heat dissipation: CFD simulation and regression orthogonal experiment. Simulation Modelling Practice and Theory, 128, 102795.
  • 21. Chen, J., Zheng, Y., Zhang, L., He, G., Zou, Y., Xiao, Z., 2022. Optimization of geometric parameters of hydraulic turbine runner in turbine mode based on the orthogonal test method and CFD. Energy Reports, 8, 14476-14487.
There are 21 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Articles
Authors

Nima Molani 0000-0001-9517-2574

Haydar Kepekçi 0000-0002-0037-8332

Publication Date October 3, 2024
Submission Date March 18, 2024
Acceptance Date September 27, 2024
Published in Issue Year 2024

Cite

APA Molani, N., & Kepekçi, H. (2024). Examination of Thermal Dispersion and Airflow within a Refrigerator. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 695-707. https://doi.org/10.21605/cukurovaumfd.1560131