Research Article
BibTex RIS Cite

Numerical Investigation of Flow Characteristics of Nanofluid Usage in L and T Fittings

Year 2021, , 457 - 472, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982818

Abstract

In this study, for two different most commonly used fittings (L, T) in industrial systems, effect of the nanofluid usage on the pressure drop and pressure loss coefficient were numerically analysed. Taking the water as base fluid, the nanofluid is obtained by adding different concentrations of aluminium, copper and titanium-based nanoparticles. In order to examine the effect of the concentration on pressure loss and flow structure, different nanofluids which are at different concentrations were studied ((A2O3, 0.3%, 0.5%, 1%, 2%, 3%) and CuO (1%, 2%, 4%). The thermophysical properties of nanofluids were taken from previous studies. The results have been verified with the results to be given in the literature. Two different turbulent models were used for numerical analysis, the standard k- ε and the standard k- ω turbulence model, which are widely preferred. The result of the computations for each nanofluid showed that as the concentration increases, the local losses increase with the increase of viscosity. It has been determined that the most suitable model is the standard k-ε for both fittings.

References

  • 1. Bergles, A., 1983. Augmentation of Heat Transfer, Heat Exchanger Design Handbook, Hemisphere Publishing, New York, secs, 2, 489-501.
  • 2. Şahin, B., Çomaklı, K., Çomaklı, Ö., Yılmaz, M., 2006. Nanoakışkanlarla Isı Transferinin İyileştirilmesi, Mühendis Makine, 559, 29-34.
  • 3. Choi, S.U., Eastman, J.A., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles, in, Argonne National Lab., IL (United States).
  • 4. Murshed, S., Leong, K., Yang, C., 2008. Thermophysical and Electrokinetic Properties of Nanofluids–a Critical Review, Applied Thermal Engineering, 28, 2109-2125.
  • 5. Ganvir, R., Walke, P., Kriplani, V., 2017. Heat Transfer Characteristics in Nanofluid-a Review. Renewable and Sustainable Energy Reviews, 75, 451-460.
  • 6. Hassanzadeh, R., Tokgoz, N., 2017. Thermal- hydraulic Characteristics of Nanofluid Flow in Corrugated Ducts., Journal of Engineering Thermophysics, 26, 498-513.
  • 7. Tokgoz, N., 2018. The Numerıcal Study of Heat Transfer Enhancement Using Al2O3-water Nanofluid in Corrugated Duct Application, Journal of Thermal Engineering, 4(3), 1984-1997. DOI: 10.18186/journal-of-thermal- engineering.409655
  • 8. Ahmed, M., Shuaib, N., Yusoff, M.Z., Al- Falahi, A., 2011. Numerical Investigations of Flow and Heat Transfer Enhancement in a Corrugated Channel Using Nanofluid, International Communications in Heat and Mass Transfer, 38, 1368-1375.
  • 9. Sasmito, A.P., Kurnia, J.C., Mujumdar, A.S., 2011. Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes. Nanoscale Research Letters, 6, 1-14.
  • 10. Godson, L., Raja, B., Lal, D.M., Wongwises, S.E.A., 2010. Enhancement of Heat Transfer Using Nanofluids-an Overview, Renewable and Sustainable Energy Reviews, 14, 629-641.
  • 11. Manay, E., Şahin, B., Akyürek, E.F., Çomaklı, Ö., 2012. Mikrokanallarda Nanoakışkanların Kullanımı, TMMOB MMO Mühendis ve Makina Dergisi, 53(627), 38-42
  • 12. Hashemi, S., Akhavan-Behabadi, M., 2012. An Empirical Study on Heat Transfer and Pressure Drop Characteristics of CuO–base Oil Nanofluid Flow in a Horizontal Helically Coiled Tube Under Constant Heat Flux, International Communications in Heat and Mass Transfer, 39, 144-151.
  • 13. Ahmed, M., Shuaib, N., Yusoff, M.Z., 2012. Numerical Investigations on the Heat Transfer Enhancement in a Wavy Channel Using Nanofluid, International Journal of Heat and Mass Transfer, 55, 5891-5898.
  • 14. Kabeel, A., Abou El Maaty, T., El Samadony, Y., 2013. The Effect of Using Nano-particles on Corrugated Plate Heat Exchanger Performance. Applied Thermal Engineering, 52, 221-229.
  • 15. Chavda, N., Jani, J.P., Patel, A.K., Zala, K.P., Nimbark, N.G., 2014. Effect of Nanofluid on Friction Factor of Pipe and Pipe Fittings: Part I- Effect of Aluminum Oxide Nanofluid. International Journal of Current Engineering and Technology, 4, 4069-4074.
  • 16. Barik, A.K., Satapathy, P.K., Sahoo, S.S., 2016. CFD Study of Forced Convective Heat Transfer Enhancement in a 90° Bend Duct of Square Cross Section Using Nanofluid, Sādhanā 41, 795-804.
  • 17. Vasa, A., Barik, A.K., Nayak, B., 2017. Turbulent Convection Heat Transfer Enhancement in a 180-degree U-bend of Triangular Cross-section Using Nanofluid, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012067.
  • 18. Mohamad, A., 2015. Myth About Nano-fluid Heat Transfer Enhancement, International Journal of Heat and Mass Transfer, 86, 397-403.
  • 19. Çengel, Y., Cimbala, J.M., Engin, T., 2008. Akışkanlar Mekaniği: Temelleri ve Uygulamaları, Güven Kitabevi.
  • 20. Kim, J., Yadav, M., Kim, S., 2014. Characteristics of Secondary Flow Induced by 90-degree Elbow in Turbulent Pipe Flow, Engineering Applications of Computational Fluid Mechanics, 8, 229-239.
  • 21. Homicz, G.F., 2004. Computational Fluid Dynamic Simulations of Pipe Elbow Flow, in, Sandia National Laboratories.
  • 22. Rahimzadeh, H., Maghsoodi, R., Sarkardeh, H., Tavakkol, S., 2012. Simulating Flow Over Circular Spillways by Using Different Turbulence Models, Engineering Applications of Computational Fluid Mechanics, 6, 100-109.
  • 23. Wilcox, D.C., 1988. Reassessment of the Scale- Determining Equation for Advanced Turbulence Models, AIAA Journal, 26, 1299-1310.
  • 24. Özbey, M., 2016. Experimental Study on Pressure Drop of Aluminum-oxide/water Nanofluids. Journal of Thermophysics and Heat Transfer, 30, 342-349.
  • 25. Bedir, Ö., 2013. Sabit Isı Akılı Yatay Bir Boruda Zorlanmış Türbülanslı Akışta Nanoakışkanların Sayısal İncelenmesi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Erzurum, 118.
  • 26. Gedik, E., Kayfeci, M., Keçebaş, A., Kurt, H., 2017. Dairsel Bir Boruda Al2O3/su ve TiO2/su Nanoakışkanların Laminer Zorlanmış Isı Taşınımı, TTMD Dergisi, 48-53.

L ve T Tesisat Bağlantı Elemanlarında Nanoakışkan Kullanımında Akış Karakteristiklerinin Sayısal Olarak İncelenmesi

Year 2021, , 457 - 472, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982818

Abstract

Yapılan bu çalışmada endüstriyel sistemlerde en çok kullanılan 2 farklı tesisat bağlantı parçasının (L, T) içerisinden nanoakışkan geçirilip, bu bağlantı parçalarının basınç düşüşleri ve basınç kayıp katsayıları sayısal olarak incelenmiştir. Nanoakışkan, temel akışkan su alınarak içerisine farklı konsantrasyonlarda alüminyum, bakır ve titanyum esaslı nanoparçacıkların eklenmesiyle elde edilmiştir. Artan konsantrasyonun basınç kaybı ve akış yapısı üzerinde etkisini incelemek için farklı konsantrasyonlarda farklı nanoakışkanlar incelenmiştir ((A2O3, %0,3, %0.5,
%1, %2, %3) ve CuO (%1, %2, %4). Nanoakışkanların termofiziksel özellikleri daha önce yapılmış olan çalışmalardan alınmıştır. Hesaplama sonuçları, literatürdeki sonuçlar ile doğrulanmıştır. Sayısal çözümlemelerde yaygın olarak tercih edilen standart k- ε ve standart k- ω türbülans modeli olmak üzere 2 farklı model kullanılmıştır. Elde edilen hesaplar sonucunda incelenen her akışkanda, konsantrasyon arttıkça viskozitenin artışı ile yerel kayıpların da arttığı ortaya konulmuştur. En uygun modelin her iki bağlantı parçası için de standart k-ε olduğu belirlenmiştir.

References

  • 1. Bergles, A., 1983. Augmentation of Heat Transfer, Heat Exchanger Design Handbook, Hemisphere Publishing, New York, secs, 2, 489-501.
  • 2. Şahin, B., Çomaklı, K., Çomaklı, Ö., Yılmaz, M., 2006. Nanoakışkanlarla Isı Transferinin İyileştirilmesi, Mühendis Makine, 559, 29-34.
  • 3. Choi, S.U., Eastman, J.A., 1995. Enhancing Thermal Conductivity of Fluids with Nanoparticles, in, Argonne National Lab., IL (United States).
  • 4. Murshed, S., Leong, K., Yang, C., 2008. Thermophysical and Electrokinetic Properties of Nanofluids–a Critical Review, Applied Thermal Engineering, 28, 2109-2125.
  • 5. Ganvir, R., Walke, P., Kriplani, V., 2017. Heat Transfer Characteristics in Nanofluid-a Review. Renewable and Sustainable Energy Reviews, 75, 451-460.
  • 6. Hassanzadeh, R., Tokgoz, N., 2017. Thermal- hydraulic Characteristics of Nanofluid Flow in Corrugated Ducts., Journal of Engineering Thermophysics, 26, 498-513.
  • 7. Tokgoz, N., 2018. The Numerıcal Study of Heat Transfer Enhancement Using Al2O3-water Nanofluid in Corrugated Duct Application, Journal of Thermal Engineering, 4(3), 1984-1997. DOI: 10.18186/journal-of-thermal- engineering.409655
  • 8. Ahmed, M., Shuaib, N., Yusoff, M.Z., Al- Falahi, A., 2011. Numerical Investigations of Flow and Heat Transfer Enhancement in a Corrugated Channel Using Nanofluid, International Communications in Heat and Mass Transfer, 38, 1368-1375.
  • 9. Sasmito, A.P., Kurnia, J.C., Mujumdar, A.S., 2011. Numerical Evaluation of Laminar Heat Transfer Enhancement in Nanofluid Flow in Coiled Square Tubes. Nanoscale Research Letters, 6, 1-14.
  • 10. Godson, L., Raja, B., Lal, D.M., Wongwises, S.E.A., 2010. Enhancement of Heat Transfer Using Nanofluids-an Overview, Renewable and Sustainable Energy Reviews, 14, 629-641.
  • 11. Manay, E., Şahin, B., Akyürek, E.F., Çomaklı, Ö., 2012. Mikrokanallarda Nanoakışkanların Kullanımı, TMMOB MMO Mühendis ve Makina Dergisi, 53(627), 38-42
  • 12. Hashemi, S., Akhavan-Behabadi, M., 2012. An Empirical Study on Heat Transfer and Pressure Drop Characteristics of CuO–base Oil Nanofluid Flow in a Horizontal Helically Coiled Tube Under Constant Heat Flux, International Communications in Heat and Mass Transfer, 39, 144-151.
  • 13. Ahmed, M., Shuaib, N., Yusoff, M.Z., 2012. Numerical Investigations on the Heat Transfer Enhancement in a Wavy Channel Using Nanofluid, International Journal of Heat and Mass Transfer, 55, 5891-5898.
  • 14. Kabeel, A., Abou El Maaty, T., El Samadony, Y., 2013. The Effect of Using Nano-particles on Corrugated Plate Heat Exchanger Performance. Applied Thermal Engineering, 52, 221-229.
  • 15. Chavda, N., Jani, J.P., Patel, A.K., Zala, K.P., Nimbark, N.G., 2014. Effect of Nanofluid on Friction Factor of Pipe and Pipe Fittings: Part I- Effect of Aluminum Oxide Nanofluid. International Journal of Current Engineering and Technology, 4, 4069-4074.
  • 16. Barik, A.K., Satapathy, P.K., Sahoo, S.S., 2016. CFD Study of Forced Convective Heat Transfer Enhancement in a 90° Bend Duct of Square Cross Section Using Nanofluid, Sādhanā 41, 795-804.
  • 17. Vasa, A., Barik, A.K., Nayak, B., 2017. Turbulent Convection Heat Transfer Enhancement in a 180-degree U-bend of Triangular Cross-section Using Nanofluid, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 012067.
  • 18. Mohamad, A., 2015. Myth About Nano-fluid Heat Transfer Enhancement, International Journal of Heat and Mass Transfer, 86, 397-403.
  • 19. Çengel, Y., Cimbala, J.M., Engin, T., 2008. Akışkanlar Mekaniği: Temelleri ve Uygulamaları, Güven Kitabevi.
  • 20. Kim, J., Yadav, M., Kim, S., 2014. Characteristics of Secondary Flow Induced by 90-degree Elbow in Turbulent Pipe Flow, Engineering Applications of Computational Fluid Mechanics, 8, 229-239.
  • 21. Homicz, G.F., 2004. Computational Fluid Dynamic Simulations of Pipe Elbow Flow, in, Sandia National Laboratories.
  • 22. Rahimzadeh, H., Maghsoodi, R., Sarkardeh, H., Tavakkol, S., 2012. Simulating Flow Over Circular Spillways by Using Different Turbulence Models, Engineering Applications of Computational Fluid Mechanics, 6, 100-109.
  • 23. Wilcox, D.C., 1988. Reassessment of the Scale- Determining Equation for Advanced Turbulence Models, AIAA Journal, 26, 1299-1310.
  • 24. Özbey, M., 2016. Experimental Study on Pressure Drop of Aluminum-oxide/water Nanofluids. Journal of Thermophysics and Heat Transfer, 30, 342-349.
  • 25. Bedir, Ö., 2013. Sabit Isı Akılı Yatay Bir Boruda Zorlanmış Türbülanslı Akışta Nanoakışkanların Sayısal İncelenmesi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Erzurum, 118.
  • 26. Gedik, E., Kayfeci, M., Keçebaş, A., Kurt, H., 2017. Dairsel Bir Boruda Al2O3/su ve TiO2/su Nanoakışkanların Laminer Zorlanmış Isı Taşınımı, TTMD Dergisi, 48-53.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nehir Tokgöz 0000-0001-9264-9971

Mürüvvet Avcı 0000-0001-8156-143X

Mehmet Tahir Erdinç 0000-0003-2201-2937

Önder Kaşka 0000-0002-7284-2093

Publication Date August 16, 2021
Published in Issue Year 2021

Cite

APA Tokgöz, N., Avcı, M., Erdinç, M. T., Kaşka, Ö. (2021). L ve T Tesisat Bağlantı Elemanlarında Nanoakışkan Kullanımında Akış Karakteristiklerinin Sayısal Olarak İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(2), 457-472. https://doi.org/10.21605/cukurovaumfd.982818