Research Article
BibTex RIS Cite

Güneş Enerjisi Santrali için Uygun Alanların CBS Tabanlı AHP Yöntemi ile Belirlenmesi: Mersin İli Örneği

Year 2021, Volume: 36 Issue: 1, 11 - 24, 10.05.2021
https://doi.org/10.21605/cukurovaumfd.933209

Abstract

Güneş enerji santrallerinin nihai yer seçim kriterleri çevresel, topografik, ekonomik, ve yasal mevzuatlar gibi bir çok değişkene bağlıdır. Yer seçimini etkileyen bu kriterler düşünüldüğünde, güneş enerji santrallerinin yer seçim yaklaşımları büyük yatırımlar için kritik bir konudur. Bu kriterlerin sistematik bir hiyerarşide düzenlemek zorunludur. Güneş enerjisi santrallerin yer seçiminin modern yöntemlerle seçilmesi ile ülke ekonomisine önemli bir katkı sağlanacağı düşünülmektedir. Bu doğrultuda mevcut çalışma, Coğrafi Bilgi Sistemleri (CBS) tabanlı çok kriterli bir karar verme (ÇKKV) tekniğini kullanarak Mersin İli’ndeki (Türkiye) güneş enerjisi santralleri için uygun yerlerin belirlenmesi amaçlamaktadır. Çevresel, ekonomik ve topografik kriterleri ağırlıklandırmak ve potansiyel alanların uygunluğunu değerlendirmek için analitik hiyerarşi yöntemi (AHP) uygulanmıştır. Sonuç olarak, çalışma alanının güneş enerjisi alanları için sahile yakın Tarsus, Yenişehir, Erdemli, Silifke, Anamur ilçelerinin ve çevresi alanların yüksek uygunluk düzeyine sahip olduğu tespit edilmiştir. Çalışma alanının kuzeydoğusunda yer alan Çamlıyayla ilçesinin ise güneş enerji santralleri için az uygun alan olarak bulunmuştur

References

  • 1. Çolak, M., Kaya, İ., 2017. Prioritization of Renewable Energy Alternatives By Using an Integrated Fuzzy MCDM Model: A Real Case Application for Turkey. Renewable and Sustainable Energy Reviews, 80, 840-853.
  • 2. Ilbahar, E., Cebi, S., Kahraman, C., 2019. A State-of-the-art Review on Multi-attribute Renewable Energy Decision Making. Energy Strategy Reviews, 25, 18-33.
  • 3. Krishna, K.S., Kumar, K.S., 2015. A Review on Hybrid Renewable Energy Systems. Renewable and Sustainable Energy Reviews, 52, 907-916.
  • 4. International Energy Agency (IEA), World Energy Outlook, https://www.iea.org/reports/world-energyoutlook- 2018. 2018.
  • 5. Intergovernmental Panel on Climate Change (IPCC), Special Reports on Renewable Energy Sources. Summary for Policy Makers, in: 11th Session of Working Group III of the IPCC, Abu Dhabi, United Arab Emirates, May 2011. 5-8.
  • 6. IPCC, 2011. Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 7. Rezaei, M., Mostafaeipour, A., Qolipour, M., Reza T.M., 2018. Investigation of the Optimal Location Design of a Hybrid Wind-solar Plant: A Case Study. International Journal of Hydrogen Energy, 43(1), 100-114.
  • 8. Ali, S., Taweekun, J., Techato, K., Waewsak, J., Gyawali, S., 2019. GIS Based Site Suitability Assessment for Wind and Solar Farms in Songkhla, Thailand. Renewable Energy, 132, 1360-1372.
  • 9. Colak, H.E., Memisoglu, T., Gercek, Y., 2020. Optimal Site Selection for Solar Photovoltaic (PV) Power Plants Using GIS and AHP: A Case Study of Malatya Province, Turkey. Renewable Energy, 149, 565-576.
  • 10. Dhar, A., Naeth, M., Jennings, P., Gamal, M., 2020. Perspectives on Environmental Impacts and a Land Reclamation Strategy for Solar and Wind Energy Systems. Science of the Total Environment. 718. 134602. 10.1016/j. scitotenv.2019.134602.
  • 11. Dhunny, A.Z., Doorga, J., Allam, Z., Lollchund, M., Boojhawon, R., 2019. Identification of Optimal Wind, Solar and Hybrid Wind-solar Farming Sites Using Fuzzy Logic Modelling. Energy. 188. 116056. 10.1016/j.energy.2019. 116056.
  • 12. Doorga, J.R., Rughooputh, S.D., Boojhawon, R., 2019. Multi-criteria GIS-based Modelling Technique for Identifying Potential Solar Farm Sites: A Case Study in Mauritius. Renewable Energy, 133, 1201-1219.
  • 13. Firozjaei, M.K., Nematollahi, O., Mijani, N., Shorabeh, N.S., Firozjaei, H., Toomanian, A., 2018. An Integrated GIS-based Ordered Weighted Averaging Analysis for Solar Energy Evaluation in Iran: Current Conditions and Future Planning. Renewable Energy. 136, 1130-1146. 10.1016/j.renene.2018.09.090.
  • 14. T.C. Enerji ve Tabii Kaynaklar Bakanlığı (MENR). Ministry of Energy and Natural Resources. Solar, https://www.enerji.gov.tr/en- US/Pages/Solar. 2019 [cited 2020 1 March ]. 15. Gorgulu, S., 2019. Investigation of RenewableEnergy Potential and Usage in TR 61 Region. Journal of Cleaner Production, 236, 117698.
  • 16. Toklu, E., 2013. Overview of Potential and Utilization of Renewable Energy Sources in Turkey. Renewable Energy, 50, 456-463.
  • 17. T.C. Enerji ve Tabii Kaynaklar Bakanlığı (MENR). 2019. Ministry of Energy and Natural Resources. General Directorate of Energy Affair, https://www.eigm.gov.tr/tr- TR/Enerji-Politikalari. [cited 2020 14 May].
  • 18. Regulatory, R.O.T.E.M. Electricity Market Sector Report, 2018, https://www.epdk.org.tr/Detay/Icerik/3-0- 24/elektrikyillik-sektor-raporu. 2020 [cited 2020 15 May].
  • 19. Çukurova Kalkınma Ajansı, 2020. The Çukurova Regional Development Agency, 2014-2023 Çukurova Regional Plan, https://www.kalkinmakutuphanesi.gov.tr/doku man/2014-2023-cukurova-bolge-plani/1149. [cited 2020 15 May].
  • 20. Türkiye Elektrik İletim Anonim Şirketi (TEIAS) 2019. Turkish Electricity Transmission Corporation. Installed Capacity Report, https://www.teias.gov.tr/tr-TR/turkiyeelektrik- uretim-iletim-istatistikleri, [cited 2019 1 February ].
  • 21. Koc, A., Turk, S., Şahin, G., 2019. Multicriteria of Wind-solar Site Selection Problem Using a GIS-AHP-based Approach with an Application in Igdir Province/Turkey. Environmental Science and Pollution Research, 26(31), 32298-32310.
  • 22. Uyan, M., 2013. GIS-based Solar Farms Site Selection Using Analytic Hierarchy Process (AHP) in Karapinar Region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11-17.
  • 23. Yelmen, B., Çakir, M.T., 2016. Influence of Temperature Changes in Various Regions of Turkey on Powers of Photovoltaic Solar Panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(4), 542-550.
  • 24. Al Garni, H.Z., Awasthi, A., 2017. Solar PV Power Plant Site Selection Using a GIS-AHP Based Approach with Application in Saudi Arabia. Applied Energy, 206, 1225-1240.
  • 25. Asakereh, A., Soleymani, M., Sheikhdavoodi, M.J., 2017. A GIS-based Fuzzy-AHP Method for the Evaluation of Solar Farms Locations: Case Study in Khuzestan Province, Iran. Solar Energy, 155, 342-353.
  • 26. Yushchenko, A., de Bono, A., Chatenoux, B., Kumar, P.M., Ray, N., 2018. GIS-based Assessment of Photovoltaic (PV) and Concentrated Solar Power (CSP) Generation Potential in West Africa. Renewable and Sustainable Energy Reviews, 81, 2088-2103.
  • 27. Merrouni, A.A., Elalaoui, F.E., Mezrhab, A., Mezrhab, A., Ghennioui, A., 2018. Large Scale PV Sites Selection by Combining GIS and Analytical Hierarchy Process. Case Study: Eastern Morocco. Renewable Energy,119, 863-873.
  • 28. Thapar, V., 2019. A Revisit to Solar Radiation Estimations Using Sunshine Duration: Analysis of Impact of These Estimations on Energy Yield of a PV Generating System. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-25.
  • 29. Aydin, N.Y., Kentel, E., Duzgun, H.S., 2013. GIS-Based Site Selection Methodology for Hybrid Renewable Energy Systems: A Case Study from Western Turkey. Energy Conversion and Management, 70, 90-106.
  • 30. Doljak, D., Stanojević, G., 2017. Evaluation of Natural Conditions for Site Selection of Ground-mounted Photovoltaic Power Plants in Serbia. Energy, 127, 291-300.
  • 31. Ozdemir, S., Sahin, G., 2018. Multi-criteria decision-making in the Location Selection for a Solar PV Power Plant Using AHP. Measurement, 129, 218-226.
  • 32. Majumdar, D., Pasqualetti, M.J., 2019. Analysis of Land Availability for Utility-scale Power Plants and Assessment of Solar Photovoltaic Development in the State of Arizona, USA. Renewable Energy, 134, 1213-1231.
  • 33. Commission, T.W.D., 2010. WDC, Site Options for Concentrated Solar Power Generation in the Wheatbelt Final Report.
  • 34. Charabi, Y., Gastli, A., 2011. PV Site Suitability Analysis Using GIS-based Spatial Fuzzy Multi-criteria Evaluation. Renewable Energy, 36(9), 2554-2561.
  • 35. Merrouni, A.A., Mezrhab, A., Mezrhab, A., 2016. PV Sites Suitability Analysis in the Eastern Region of Morocco. Sustainable Energy Technologies and Assessments, 18, 6-15.
  • 36. Noorollahi, Y., Yousefi, H., Mohammadi, M., 2016. Multi-criteria Decision Support System for Wind Farm Site Selection Using GIS. Sustainable Energy Technologies and Assessments, 13, 38-50.
  • 37. Giamalaki, M., Tsoutsos, T., 2019. Sustainable Siting of Solar Power Installations in Mediterranean Using a GIS/AHP Approach. Renewable Energy, 141, 64-75.
  • 38. Tsoutsos, T., Frantzeskaki, N., Gekas, V., 2005. Environmental Impacts from the Solar Energy Technologies. Energy Policy, 33(3), 289-296.
  • 39. Anwarzai, M.A., Nagasaka, K., 2017. Utilityscale Implementable Potential of Wind and Solar Energies for Afghanistan Using GIS Multi-criteria Decision Analysis. Renewable and Sustainable Energy Reviews, 71, 150-160.
  • 40. Aly, A., Jensen, S.S., Pedersen, A.B., 2017. Solar Power Potential of Tanzania: Identifying CSP and PV Hot Spots Through a GIS Multicriteria Decision Making Analysis. Renewable Energy, 113, 159-175.
  • 41. Sánchez-Lozano, J.M., García-Cascales, M.S., Lamata, M.T., 2015. Evaluation of Suitable Locations for the Installation of Solar Thermoelectric Power Plants. Computers & Industrial Engineering, 87, 343-355.
  • 42. Tahri, M., Hakdaoui, M., Maanan, M., 2015. The Evaluation of Solar Farm Locations Applying Geographic Information System and Multi-Criteria Decision-Making methods: Case Study in Southern Morocco. Renewable and Sustainable Energy Reviews, 51, 1354-1362.
  • 43. Baban, S.M., Parry, T., 2001. Developing and Applying a GIS-assisted Approach to Locating Wind Farms in the UK. Renewable Energy, 24(1), 59-71.
  • 44. Watson, J.J., Hudson, M.D., 2015. Regional Scale Wind Farm and Solar Farm Suitability Assessment Using GIS-assisted Multi-criteria Evaluation. Landscape and Urban Planning, 138, 20-31.
  • 45. Tavana, M., Santos, A., Francisco, J., Mohammadi, S., Alimohammadi, M., 2017. A Fuzzy Multi-Criteria Spatial Decision Support System for Solar Farm Location Planning. Energy Strategy Reviews. 18. 93-105. 10.1016/j.esr.2017.09.003.
  • 46. Yun-na, W., Yisheng, Y., Tiantian, F., Li-na, K., Wei, L., Luo-jie, F., 2013. Macro-site Selection of Wind/solar Hybrid Power Station Based on Ideal Matter-Element Model. International Journal of Electrical Power & Energy Systems. 50(1), 76–84. 10.1016/j.ijepes.2013.02.024.
  • 47. Carrión, J., Estrella, A., Dols, F., Zamorano, M., Rodríguez, M., Ridao, A., 2008. Environmental Decision-support Systems for Evaluating the Carrying Capacity of Land Areas: Optimal Site Selection for Gridconnected Photovoltaic Power Plants. Renewable and Sustainable Energy Reviews. 12(9), 2358-2380. 10.1016/j.rser.2007.06.011.
  • 48. Ziuku, S., Seyitini, L., Mapurisa, B., David, C., Kuijk, K., 2014. Potential of Concentrated Solar Power (CSP) in Zimbabwe. Energy for Sustainable Development, 23, 220-227.
  • 49. Unal, M., Cilek, A., Guner, E.D., 2019. Implementation of Fuzzy, Simos and Strengths, Weaknesses, Opportunities and Threats Analysis for Municipal Solid Waste Landfil Site Selection: Adana City Case Study. Waste Management & Research, 0734242 X19893111.
  • 50. Kandel, A., 1980. The Analytic Hierarchy Process-Planning, Priority Setting, Resource Allocation, Thomas L. Saaty (Ed.), McGraw- Hill, Basel, 1983, North-Holland, 287.
  • 51. García-Cascales, M.S., Sánchez-Lozano, J.M.. 2013. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) Methods for the Evaluation of Solar Farms Locations: Case Study in South-eastern Spain. Renewable and Sustainable Energy Reviews.24. 544. 10.1016/j.rser.2013.03.019.
  • 52. Zoghi, M., Ehsani, A., Sadat, M., Amiri, M., Karimi, S., 2015. Optimization Solar Site Selection by Fuzzy Logic Model and Weighted Linear Combination Method in Arid and Semiarid Region: A Case Study Isfahan-IRAN. Renewable and Sustainable Energy Reviews. 68(1),. 986-996.
  • 53. Yenilenebilir Enerji Genel Müdürlüğü. General Directorate of Energy Affairs. Solar Energy Potential Atlas, http://www.yegm.gov.tr /MyCalculator/. 2020 [cited 2020 12 May].

Determination of Suitable Areas for SolarPower Plant with GIS Based AHP Method: Mersin Province Example

Year 2021, Volume: 36 Issue: 1, 11 - 24, 10.05.2021
https://doi.org/10.21605/cukurovaumfd.933209

Abstract

The location selection criteria for solar power plants depedns on many variables such as environmental,topographic, economic impacts and legal regulations. Considering these criteria that affect the location selection, location approach of solar power plants is a critical issue for large investments. It is imperative
to organize these criteria in a systematic hierarchy. It is thought that a significant contribution will be made to the country’s economy by choosing the location of solar power plants with modern methods. Existing work in this direction, GIS-based (Geographic Information Systems) multi-criteria decision making (MCDM) using the technique in Mersin (Turkey) aims to select suitable location for solar power plants. Analytical hierarchy process (AHP) was used to weight the criteria and evaluate potential sites. As a result, Tarsus, Yenişehir, Erdemli, Silifke, Anamur districts close to the seashore and their surrounding areas were determined to be suitable for the solar energy fields of the study area. While Çamlıyayla district, which is located in the northeast, is found to be less suitable for solar power plants.

References

  • 1. Çolak, M., Kaya, İ., 2017. Prioritization of Renewable Energy Alternatives By Using an Integrated Fuzzy MCDM Model: A Real Case Application for Turkey. Renewable and Sustainable Energy Reviews, 80, 840-853.
  • 2. Ilbahar, E., Cebi, S., Kahraman, C., 2019. A State-of-the-art Review on Multi-attribute Renewable Energy Decision Making. Energy Strategy Reviews, 25, 18-33.
  • 3. Krishna, K.S., Kumar, K.S., 2015. A Review on Hybrid Renewable Energy Systems. Renewable and Sustainable Energy Reviews, 52, 907-916.
  • 4. International Energy Agency (IEA), World Energy Outlook, https://www.iea.org/reports/world-energyoutlook- 2018. 2018.
  • 5. Intergovernmental Panel on Climate Change (IPCC), Special Reports on Renewable Energy Sources. Summary for Policy Makers, in: 11th Session of Working Group III of the IPCC, Abu Dhabi, United Arab Emirates, May 2011. 5-8.
  • 6. IPCC, 2011. Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 7. Rezaei, M., Mostafaeipour, A., Qolipour, M., Reza T.M., 2018. Investigation of the Optimal Location Design of a Hybrid Wind-solar Plant: A Case Study. International Journal of Hydrogen Energy, 43(1), 100-114.
  • 8. Ali, S., Taweekun, J., Techato, K., Waewsak, J., Gyawali, S., 2019. GIS Based Site Suitability Assessment for Wind and Solar Farms in Songkhla, Thailand. Renewable Energy, 132, 1360-1372.
  • 9. Colak, H.E., Memisoglu, T., Gercek, Y., 2020. Optimal Site Selection for Solar Photovoltaic (PV) Power Plants Using GIS and AHP: A Case Study of Malatya Province, Turkey. Renewable Energy, 149, 565-576.
  • 10. Dhar, A., Naeth, M., Jennings, P., Gamal, M., 2020. Perspectives on Environmental Impacts and a Land Reclamation Strategy for Solar and Wind Energy Systems. Science of the Total Environment. 718. 134602. 10.1016/j. scitotenv.2019.134602.
  • 11. Dhunny, A.Z., Doorga, J., Allam, Z., Lollchund, M., Boojhawon, R., 2019. Identification of Optimal Wind, Solar and Hybrid Wind-solar Farming Sites Using Fuzzy Logic Modelling. Energy. 188. 116056. 10.1016/j.energy.2019. 116056.
  • 12. Doorga, J.R., Rughooputh, S.D., Boojhawon, R., 2019. Multi-criteria GIS-based Modelling Technique for Identifying Potential Solar Farm Sites: A Case Study in Mauritius. Renewable Energy, 133, 1201-1219.
  • 13. Firozjaei, M.K., Nematollahi, O., Mijani, N., Shorabeh, N.S., Firozjaei, H., Toomanian, A., 2018. An Integrated GIS-based Ordered Weighted Averaging Analysis for Solar Energy Evaluation in Iran: Current Conditions and Future Planning. Renewable Energy. 136, 1130-1146. 10.1016/j.renene.2018.09.090.
  • 14. T.C. Enerji ve Tabii Kaynaklar Bakanlığı (MENR). Ministry of Energy and Natural Resources. Solar, https://www.enerji.gov.tr/en- US/Pages/Solar. 2019 [cited 2020 1 March ]. 15. Gorgulu, S., 2019. Investigation of RenewableEnergy Potential and Usage in TR 61 Region. Journal of Cleaner Production, 236, 117698.
  • 16. Toklu, E., 2013. Overview of Potential and Utilization of Renewable Energy Sources in Turkey. Renewable Energy, 50, 456-463.
  • 17. T.C. Enerji ve Tabii Kaynaklar Bakanlığı (MENR). 2019. Ministry of Energy and Natural Resources. General Directorate of Energy Affair, https://www.eigm.gov.tr/tr- TR/Enerji-Politikalari. [cited 2020 14 May].
  • 18. Regulatory, R.O.T.E.M. Electricity Market Sector Report, 2018, https://www.epdk.org.tr/Detay/Icerik/3-0- 24/elektrikyillik-sektor-raporu. 2020 [cited 2020 15 May].
  • 19. Çukurova Kalkınma Ajansı, 2020. The Çukurova Regional Development Agency, 2014-2023 Çukurova Regional Plan, https://www.kalkinmakutuphanesi.gov.tr/doku man/2014-2023-cukurova-bolge-plani/1149. [cited 2020 15 May].
  • 20. Türkiye Elektrik İletim Anonim Şirketi (TEIAS) 2019. Turkish Electricity Transmission Corporation. Installed Capacity Report, https://www.teias.gov.tr/tr-TR/turkiyeelektrik- uretim-iletim-istatistikleri, [cited 2019 1 February ].
  • 21. Koc, A., Turk, S., Şahin, G., 2019. Multicriteria of Wind-solar Site Selection Problem Using a GIS-AHP-based Approach with an Application in Igdir Province/Turkey. Environmental Science and Pollution Research, 26(31), 32298-32310.
  • 22. Uyan, M., 2013. GIS-based Solar Farms Site Selection Using Analytic Hierarchy Process (AHP) in Karapinar Region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11-17.
  • 23. Yelmen, B., Çakir, M.T., 2016. Influence of Temperature Changes in Various Regions of Turkey on Powers of Photovoltaic Solar Panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(4), 542-550.
  • 24. Al Garni, H.Z., Awasthi, A., 2017. Solar PV Power Plant Site Selection Using a GIS-AHP Based Approach with Application in Saudi Arabia. Applied Energy, 206, 1225-1240.
  • 25. Asakereh, A., Soleymani, M., Sheikhdavoodi, M.J., 2017. A GIS-based Fuzzy-AHP Method for the Evaluation of Solar Farms Locations: Case Study in Khuzestan Province, Iran. Solar Energy, 155, 342-353.
  • 26. Yushchenko, A., de Bono, A., Chatenoux, B., Kumar, P.M., Ray, N., 2018. GIS-based Assessment of Photovoltaic (PV) and Concentrated Solar Power (CSP) Generation Potential in West Africa. Renewable and Sustainable Energy Reviews, 81, 2088-2103.
  • 27. Merrouni, A.A., Elalaoui, F.E., Mezrhab, A., Mezrhab, A., Ghennioui, A., 2018. Large Scale PV Sites Selection by Combining GIS and Analytical Hierarchy Process. Case Study: Eastern Morocco. Renewable Energy,119, 863-873.
  • 28. Thapar, V., 2019. A Revisit to Solar Radiation Estimations Using Sunshine Duration: Analysis of Impact of These Estimations on Energy Yield of a PV Generating System. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-25.
  • 29. Aydin, N.Y., Kentel, E., Duzgun, H.S., 2013. GIS-Based Site Selection Methodology for Hybrid Renewable Energy Systems: A Case Study from Western Turkey. Energy Conversion and Management, 70, 90-106.
  • 30. Doljak, D., Stanojević, G., 2017. Evaluation of Natural Conditions for Site Selection of Ground-mounted Photovoltaic Power Plants in Serbia. Energy, 127, 291-300.
  • 31. Ozdemir, S., Sahin, G., 2018. Multi-criteria decision-making in the Location Selection for a Solar PV Power Plant Using AHP. Measurement, 129, 218-226.
  • 32. Majumdar, D., Pasqualetti, M.J., 2019. Analysis of Land Availability for Utility-scale Power Plants and Assessment of Solar Photovoltaic Development in the State of Arizona, USA. Renewable Energy, 134, 1213-1231.
  • 33. Commission, T.W.D., 2010. WDC, Site Options for Concentrated Solar Power Generation in the Wheatbelt Final Report.
  • 34. Charabi, Y., Gastli, A., 2011. PV Site Suitability Analysis Using GIS-based Spatial Fuzzy Multi-criteria Evaluation. Renewable Energy, 36(9), 2554-2561.
  • 35. Merrouni, A.A., Mezrhab, A., Mezrhab, A., 2016. PV Sites Suitability Analysis in the Eastern Region of Morocco. Sustainable Energy Technologies and Assessments, 18, 6-15.
  • 36. Noorollahi, Y., Yousefi, H., Mohammadi, M., 2016. Multi-criteria Decision Support System for Wind Farm Site Selection Using GIS. Sustainable Energy Technologies and Assessments, 13, 38-50.
  • 37. Giamalaki, M., Tsoutsos, T., 2019. Sustainable Siting of Solar Power Installations in Mediterranean Using a GIS/AHP Approach. Renewable Energy, 141, 64-75.
  • 38. Tsoutsos, T., Frantzeskaki, N., Gekas, V., 2005. Environmental Impacts from the Solar Energy Technologies. Energy Policy, 33(3), 289-296.
  • 39. Anwarzai, M.A., Nagasaka, K., 2017. Utilityscale Implementable Potential of Wind and Solar Energies for Afghanistan Using GIS Multi-criteria Decision Analysis. Renewable and Sustainable Energy Reviews, 71, 150-160.
  • 40. Aly, A., Jensen, S.S., Pedersen, A.B., 2017. Solar Power Potential of Tanzania: Identifying CSP and PV Hot Spots Through a GIS Multicriteria Decision Making Analysis. Renewable Energy, 113, 159-175.
  • 41. Sánchez-Lozano, J.M., García-Cascales, M.S., Lamata, M.T., 2015. Evaluation of Suitable Locations for the Installation of Solar Thermoelectric Power Plants. Computers & Industrial Engineering, 87, 343-355.
  • 42. Tahri, M., Hakdaoui, M., Maanan, M., 2015. The Evaluation of Solar Farm Locations Applying Geographic Information System and Multi-Criteria Decision-Making methods: Case Study in Southern Morocco. Renewable and Sustainable Energy Reviews, 51, 1354-1362.
  • 43. Baban, S.M., Parry, T., 2001. Developing and Applying a GIS-assisted Approach to Locating Wind Farms in the UK. Renewable Energy, 24(1), 59-71.
  • 44. Watson, J.J., Hudson, M.D., 2015. Regional Scale Wind Farm and Solar Farm Suitability Assessment Using GIS-assisted Multi-criteria Evaluation. Landscape and Urban Planning, 138, 20-31.
  • 45. Tavana, M., Santos, A., Francisco, J., Mohammadi, S., Alimohammadi, M., 2017. A Fuzzy Multi-Criteria Spatial Decision Support System for Solar Farm Location Planning. Energy Strategy Reviews. 18. 93-105. 10.1016/j.esr.2017.09.003.
  • 46. Yun-na, W., Yisheng, Y., Tiantian, F., Li-na, K., Wei, L., Luo-jie, F., 2013. Macro-site Selection of Wind/solar Hybrid Power Station Based on Ideal Matter-Element Model. International Journal of Electrical Power & Energy Systems. 50(1), 76–84. 10.1016/j.ijepes.2013.02.024.
  • 47. Carrión, J., Estrella, A., Dols, F., Zamorano, M., Rodríguez, M., Ridao, A., 2008. Environmental Decision-support Systems for Evaluating the Carrying Capacity of Land Areas: Optimal Site Selection for Gridconnected Photovoltaic Power Plants. Renewable and Sustainable Energy Reviews. 12(9), 2358-2380. 10.1016/j.rser.2007.06.011.
  • 48. Ziuku, S., Seyitini, L., Mapurisa, B., David, C., Kuijk, K., 2014. Potential of Concentrated Solar Power (CSP) in Zimbabwe. Energy for Sustainable Development, 23, 220-227.
  • 49. Unal, M., Cilek, A., Guner, E.D., 2019. Implementation of Fuzzy, Simos and Strengths, Weaknesses, Opportunities and Threats Analysis for Municipal Solid Waste Landfil Site Selection: Adana City Case Study. Waste Management & Research, 0734242 X19893111.
  • 50. Kandel, A., 1980. The Analytic Hierarchy Process-Planning, Priority Setting, Resource Allocation, Thomas L. Saaty (Ed.), McGraw- Hill, Basel, 1983, North-Holland, 287.
  • 51. García-Cascales, M.S., Sánchez-Lozano, J.M.. 2013. Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) Methods for the Evaluation of Solar Farms Locations: Case Study in South-eastern Spain. Renewable and Sustainable Energy Reviews.24. 544. 10.1016/j.rser.2013.03.019.
  • 52. Zoghi, M., Ehsani, A., Sadat, M., Amiri, M., Karimi, S., 2015. Optimization Solar Site Selection by Fuzzy Logic Model and Weighted Linear Combination Method in Arid and Semiarid Region: A Case Study Isfahan-IRAN. Renewable and Sustainable Energy Reviews. 68(1),. 986-996.
  • 53. Yenilenebilir Enerji Genel Müdürlüğü. General Directorate of Energy Affairs. Solar Energy Potential Atlas, http://www.yegm.gov.tr /MyCalculator/. 2020 [cited 2020 12 May].
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Esra Deniz Güner This is me 0000-0002-0492-2999

Senem Tekin This is me 0000-0001-7734-9700

Müge Çilek This is me 0000-0002-1147-9729

Ahmet Çilek This is me 0000-0002-1147-9729

Publication Date May 10, 2021
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Güner, E. D., Tekin, S., Çilek, M., Çilek, A. (2021). Güneş Enerjisi Santrali için Uygun Alanların CBS Tabanlı AHP Yöntemi ile Belirlenmesi: Mersin İli Örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(1), 11-24. https://doi.org/10.21605/cukurovaumfd.933209