Research Article
BibTex RIS Cite

Bakır Anot Çamurundan Bakırın Liçinde Düşük Ötektik Noktalı Çözücü Kullanımının Araştırılması

Year 2021, Volume: 36 Issue: 1, 105 - 120, 10.05.2021
https://doi.org/10.21605/cukurovaumfd.933848

Abstract

Bu çalışmada, pirometalurjik yöntemle metalik bakır üretiminin elektrokazanım aşamasında ortaya çıkan anot çamurundan bakır geri kazanımı üzerine çevre ve insan sağlığına duyarlı düşük ötektik noktalı çözücü (DES) kullanımı araştırılmıştır. Taguchi optimizasyon yöntemi kullanılarak liç sıcaklığı, liç süresi ve katı/sıvı oranı deneysel parametrelerin bakır geri kazanımı üzerine etkisi incelenmiştir. Kolin klorür (ChCl) ve ürenin 1:2 molar oranda karıştırılmasıyla hazırlanan DES çözücüsü ile yapılan liç işlemleri sonunda optimum şartlar; 95 oC’liç sıcaklığı, 2 saat liç süresi ve 1/20 katı/sıvı oranı olarak belirlenmiş ve bu şartlarda %98 bakır geri kazanımı elde edilmiştir. Yapılan bu çalışma ile ChCl-üre karışımıyla hazırlanan DES çözücüsünün anot çamurundan bakır geri kazanımı için çevreci bir çözücü adayı olabileceği ortaya konulmuştur.

References

  • 1. Schlesinger, M.E., Sole, K.C., Davenport, W.G., 2011. Extractive Metallurgy of Copper. Elsevier, 472.
  • 2. Topçu, M.A., Rüşen, A., Derin, B., 2019. Minimizing of Copper Losses to Converter Slag by a Boron Compound Addition. J Mater Res Technol 8, 6244-6252. https://doi.org/10.1016/j.jmrt.2019.10.018.
  • 3. Lee, J.C., Kurniawan, K., Chung, K.W., Kim, S., 2020. Metallurgical Process for Total Recovery of all Constituent Metals from Copper Anode Slimes: A Review of Established Technologies and Current Progress. Met Mater Int. https://doi.org/10.1007/s12540-020-00716-7.
  • 4. Dehghanpoor, M.H., Zivdar, M., Torabi, M., 2016. Extraction of Copper and Gold from Anode Slime of Sarcheshmeh Copper Complex. J South African Inst Min Metall, 116, 1153–1157. http://dx.doi.org/10.17159/2411-9717/2016/v116n12a9.
  • 5. Jin, Y., Kim, J., Guillaume, B., 2016. Reviewof Critical Material Studies. Resour Conserv Recycl 113, 77–87. https://doi.org/10.1016/j.resconrec.2016.06.003.
  • 6. Hait, J., Jana, R.K., Kumar, V., Sanyal, S.K., 2002. Some Studies on Sulfuric Acid Leaching of Anode Slime with Additives. Ind Eng Chem Res 41, 6593–6599. https://doi.org/10.1021/ie020239j.
  • 7. Yang, H., Li, X., Tong, L., Jin, Z., Yin, L., Chen, G., 2018. Leaching Kinetics of Selenium from Copper Anode Slimes by Nitric Acid- Sulfuric Acid mixture. Trans Nonferrous Met Soc China 28, 186–192. https://doi.org/10.1016/S1003-6326(18)64652-7.
  • 8. Li, X., Yang, H., Jin, Z., Tong, L., Xiao, F., 2017. Selenium Leaching from Copper Anode Slimes Using a Nitric Acid–Sulfuric Acid Mixture. Metallurgist 61, 348–356. https://doi.org/10.1007/s11015-017-0500-2.
  • 9. Xiao, L., Wang, Y., Yu, Yang., Fu, G., Liu, Y., Sun, Z., Ye, S., 2019. Enhanced Selective Recovery of Selenium from Anode Slime Using MnO2 in Dilute H2SO4 Solution as Oxidant. J Clean Prod, 209, 494–504. https://doi.org/ 10.1016/j.jclepro.2018.10.144.
  • 10. Tokkan, D., Kuşlu, S., Çalban, T., Çolak, S., 2013. Optimization of Silver Removal from Anode Slime by Microwave Irradiation in Ammonium Thiosulfate Solutions. Ind Eng Chem Res, 52, 9719–9725. https://doi.org/10.1021/ie400345g.
  • 11. Wang, S., Cui, W., Zhang, G., Zhang, L., Peng, J., 2017. Ultrafast Ultrasound-Assisted Decopperization from Copper Anode Slime. Ultrason Sonochem, 36, 20–26. https://doi.org/10.1016/j.ultsonch.2016.11.013.
  • 12. Li, D., Guo, X., Xu, Z., Xu, R., Feng, Q., 2016. Metal Values Separation from Residue Generated in Alkali Fusion-Leaching of Copper Anode Slime. Hydrometallurgy, 165, 290–294. https://doi.org/10.1016/j.hydromet. 2016.01.021
  • 13. Guo, X., Xu, Z., Tian, Q., Li, D., 2017. Optimization on Selenium and Arsenic Conversion from Copper Anode Slime by Low-Temperature Alkali Fusion Process. J Cent South Univ, 24, 1537–1543. https://doi.org/10.1007/s11771-017-3558-x
  • 14. Rüşen, A., Topcu, M.A., 2017. Optimization of Gold Recovery from Copper Anode Slime by Acidic Ionic Liquid. Korean J Chem. Eng. 34, 2958–2965. https://doi.org/10.1007/s11814-017-0200-4.
  • 15. Rüşen, A., Topçu, M.A., 2018 Investigation of an Alternative Chemical Agent to Recover Valuable Metals from Anode Slime. Chem Pap 72, 2879–2891. https://doi.org/10.1007/s11696-018-0511-x.
  • 16. Binnemans, K., Jones, P.T., 2017. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. J Sustain Metall. 3, 570–600. https://doi.org/10.1007/s40831-017- 0128-2. Bakır Anot Çamurundan Bakırın Liçinde Düşük Ötektik Noktalı Çözücü Kullanımının Araştırılması 118 Ç.Ü. Müh. Fak. Dergisi, 36(1), Mart 2021
  • 17. Palden, T., Regadío, M., Onghena, B.Binnemans, K., 2019. Selective Metal Recovery from Jarosite Residue by Leaching with Acid-Equilibrated Ionic Liquids and Precipitation-Stripping. ACS Sustain Chem Eng. 7, 4239–4246. https://doi.org/10.1021/ acssuschemeng.8b05938.
  • 18. Zhang, Q., Vigier, K.D.O., Royer, S., Jerome, F., 2012. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chemical Society Reviews, 41(21), 7108-7146. https://doi.org/10.1039/C2CS35178A.
  • 19. Abbott, A.P., Capper, G., Davies, D.L., McKenzie, K J., Obi, S.U., 2006. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. Journal of Chemical & Engineering Data, 51(4), 1280-1282.
  • 20. Abbott, A.P., Capper, G., Davies, D.L.,mShikotra, P., 2006. Processing Metal OxidesmUsing Ionic Liquids. Mineral Processing and Extractive Metallurgy, 115(1), 15-18.
  • 21. Abbott, A.P., Collins, J., Dalrymple, I., Harris, C.P., Mistry, R., Qiu, F., Scheirer, J., Wise, W.,m2009. Processing of Electric Arc Furnace Dust Using Deep Eutectic Solvents. Aust J Chem. 62, 341–347. https://doi.org/10.1071/CH08476.
  • 22. Bakkar, A., Neubert, V., 2019. Recycling of Cupola Furnace Dust: Extraction and Electrodeposition of Zinc in Deep Eutectic Solvents. J Alloys Compd. 771, 424–432. https://doi.org/10.1016/j.jallcom.2018.08.246.
  • 23. Rüşen, A., Topçu, M., 2017. Investigation of Various Metal Recoveries from Zinc Plant Leach Residue by Choline-Chloride Agent. Curr Phys Chem. 7, 273–280. https://doi.org/10.2174/1877946807666170808120341.
  • 24. Rodriguez, N. R., Machiels, L., Onghena, B., Spooren, J., Binnemans, K., 2020. Selective Recovery of Zinc from Goethite Residue in the Zinc Industry Using Deep-Eutectic Solvents. Rsc Adv. 10, 7328–7335. https://doi.org/ 10.1039/D0RA00277A.
  • 25. Peeters, N., Binnemans, K., Riaño, S., 2020. Solvometallurgical Recovery of Cobalt from Lithium-Ion Battery Cathode Materials Using Deep-eutectic Solvents. Green Chem. 22, 4210-4221. https://doi.org/10.1039/D0GC00940G.
  • 26. Wang, S., Zhang, Z., Lu, Z.G., Xu, Z.A., 2020. Novel Method for Screening Deep Eutectic Solvent to Recycle Cathode of Li-Ion Batteries. Green Chem. 22, 4473-4482. https://doi.org/10.1039/D0GC00701C.
  • 27. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Shikotra, P., 2005. Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids. Inorg Chem. 44, 6497–6499. https://doi.org/10.1021/ic0505450.
  • 28. Khoei, A.R., Masters, I., Gethin, D.T., 2002. Design Optimisation of Aluminium Recycling Processes Using Taguchi Technique. J Mater Process Technol. 127, 96–106. https://doi.org/10.1016/S0924-0136(02)00273-X.
  • 29. Taguchi, G., 2005. Chowdhury, S., Wu, Y. Taguchi’s Quality Engineering Handbook. Wiley, 1696.
  • 30. Guo, Z.H., Pan, F.K., Xiao, X.Y., Zhang, L.,Jiang, K.Q., 2010. Optimization of Brine Leaching of Metals from Hydrometallurgical Residue. Trans Nonferrous Met Soc China, 20, 2000–2005. https://doi.org/10.1016/S1003- 6326(09)60408-8.
  • 31. Dhawan, N., Safarzadeh, M.S., Birinci, M., 2011. Kinetics of Hydrochloric Acid Leaching of Smithsonite. Russ J Non-Ferrous Met. 52, 209–216. https://doi.org/10.3103/S1067821211030059.
  • 32. Farahmand, F., Moradkhani, D., Safarzadeh, M. S., Rashchi, F., 2009. Brine Leaching of Lead-Bearing Zinc Plant Residues: Process Optimization Using Orthogonal Array Design Methodology. Hydrometallurgy, 95, 316–324. https://doi.org/10.1016/j.hydromet.2008.07.012.
  • 33. Kim, S.M., Park, K.S., Do Kim, K., Park, S. D., Kim, H.T., 2009. Optimization of Parameters for the Synthesis of Bimodal Ag Nanoparticles by Taguchi Method. J Ind Eng Chem. 15, 894–897. https://doi.org/10.1016/j.jiec.2009.09.019.
  • 34. Liu, G., Wu, Y., Tang, A., Li, B., 2020. Recovery of Scattered and Precious Metals from Copper Anode Slime by Hydrometallurgy: A Review. Hydrometallurgy, 197, 105460-105476. https://doi.org/10.1016/j.hydromet.2020.105460.
  • 35. Pérez, K., Toro, M., Saldaña, M., Rodriguez, E.S., Robles, P., Torres, D., Ricardo, I.J., 2020. Statistical Study for Leaching of Covellite in a Chloride Media. Metals. 10, 477. https://doi.org/10.3390/met10040477.
  • 36. Abbott, A.P., Capper, G., Davies, D.L., Shikotra, P., 2006. Processing Metal Oxides Using Ionic Liquids. Miner Process Extr Metall, 115, 15–18. https://doi.org/10.1179/ 174328506 X91293.
  • 37. Bakkar, A., 2014. Recycling of Electric Arc Furnace Dust Through Dissolution in Deep Eutectic Ionic Liquids and Electrowinning. J Hazard Mater, 280, 191–199. https://doi.org/10.1016/j.jhazmat.2014.07.066.
  • 38. Xie, X., Zou, X., Lu, X., Zheng, K., Cheng, H., Xu, Q., Zhou, Z., 2016. Voltammetric Study and Eectrodeposition of Cu from CuO in Deep Eutectic Solvents. J Electrochem Soc. 163, 537-543. https://doi.org/10.1149/2.1241609jes.
  • 39. Rao, S., Zou, X., Wang, S. Lu, Y., Shi, T., Hsu, H., Xu, Q., Lu, X., 2019. Electrodeposition of Ni-Cu Alloy Films from Nickel Matte in Deep Eutectic Solvent. Mater Chem Phys, 232, 6–15. https://doi.org/10.1016/j.matchemphys.2019.04.052.
  • 40. Yang, H., Reddy, R.G., 2014. Fundamental Studies on Electrochemical Deposition of Lead from Lead Oxide in 2: 1 Urea/Choline Chloride Ionic Liquids. J Electrochem Soc, 161, 586. https://doi.org/10.1149/2.1161410jes.
  • 41. Dönmez, B., Çelik, C., Çolak, S., Yartaşı, A., 1998. Dissolution Optimization of Copper from Anode Slime in H2SO4 Solutions. Ind Eng Chem Res, 37, 3382–3387. https://doi.org/10.1021/ie9800290.
  • 42. Liu, W., Yang, T., Zhang, D., Chen, L., Liu, Y. 2014. Pretreatment of Copper Anode Slime with Alkaline Pressure Oxidative Leaching. Int J Miner Process, 128, 48–54. https://doi.org/10.1016/j.minpro.2014.03.002.
  • 43. Xing, W.D., Lee, M.S., 2017. Leaching of Gold and Silver from Anode Slime with a Mixture of Hydrochloric Acid and Oxidizing Agents. Geosystem Eng, 20, 216–223. https://doi.org/10.1080/12269328.2017.1278728.
  • 44. Rüşen, A., Topçu, M.A., 2017. The Effect of EmimHSO4 (1-Ethyl-3-Methyl-imidazolium Hydrogen Sulfate) on Copper Recovery from Anode Slime. AKU J Sci Eng, 17, 696–703. https://doi: 10.5578/fmbd.58610.
  • 45. Ma, Z., Yang, H., Huang, S., Lu, Y., Xiong, L., 2015. Ultra-fast Microwave-assisted Leaching for the Recovery of Copper and Tellurium from Copper Anode Slime. Int J Miner Metall Mater, 22, 582–588. https://doi.org/10.1007/s12613-015-1110-2.
  • 46. Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., Ragauskas, A.J., 2018. Natural Deep Eutectic Solvents for Lignocellulosic Biomass Pretreatment: Recent Developments, Challenges and Novel Opportunities. Biotechnol Adv, 36, 2030-2050. https://doi.org/10.1016/j.biotechadv.2018.08.009.

Investigation of Use of Deep Eutectic Solvent on Copper Leaching from Copper Anode Slime

Year 2021, Volume: 36 Issue: 1, 105 - 120, 10.05.2021
https://doi.org/10.21605/cukurovaumfd.933848

Abstract

In this study, use of environmentally and human health sensitive solvent, called deep eutectic solvent (DES), was investigated for copper recovery from anode slime which was produced during electrorefining stage of the metallic copper production by pyrometallurgical method. The effect of experimental parameters was investigated using the Taguchi optimization method. At the end of the leaching process with DES solvent prepared by mixing ChCl and urea in 1:2 molar ratio, optimum conditions were determined as; 95 oC leaching temperature, 2 hours leaching time and 1/20 solid/liquid ratio and 98% copper recovery was obtained under this condition. With this study, it has been revealed that DES prepared by ChCl-urea mixture can be an environmentally friendly solvent candidate for copper recovery from anode slime.

References

  • 1. Schlesinger, M.E., Sole, K.C., Davenport, W.G., 2011. Extractive Metallurgy of Copper. Elsevier, 472.
  • 2. Topçu, M.A., Rüşen, A., Derin, B., 2019. Minimizing of Copper Losses to Converter Slag by a Boron Compound Addition. J Mater Res Technol 8, 6244-6252. https://doi.org/10.1016/j.jmrt.2019.10.018.
  • 3. Lee, J.C., Kurniawan, K., Chung, K.W., Kim, S., 2020. Metallurgical Process for Total Recovery of all Constituent Metals from Copper Anode Slimes: A Review of Established Technologies and Current Progress. Met Mater Int. https://doi.org/10.1007/s12540-020-00716-7.
  • 4. Dehghanpoor, M.H., Zivdar, M., Torabi, M., 2016. Extraction of Copper and Gold from Anode Slime of Sarcheshmeh Copper Complex. J South African Inst Min Metall, 116, 1153–1157. http://dx.doi.org/10.17159/2411-9717/2016/v116n12a9.
  • 5. Jin, Y., Kim, J., Guillaume, B., 2016. Reviewof Critical Material Studies. Resour Conserv Recycl 113, 77–87. https://doi.org/10.1016/j.resconrec.2016.06.003.
  • 6. Hait, J., Jana, R.K., Kumar, V., Sanyal, S.K., 2002. Some Studies on Sulfuric Acid Leaching of Anode Slime with Additives. Ind Eng Chem Res 41, 6593–6599. https://doi.org/10.1021/ie020239j.
  • 7. Yang, H., Li, X., Tong, L., Jin, Z., Yin, L., Chen, G., 2018. Leaching Kinetics of Selenium from Copper Anode Slimes by Nitric Acid- Sulfuric Acid mixture. Trans Nonferrous Met Soc China 28, 186–192. https://doi.org/10.1016/S1003-6326(18)64652-7.
  • 8. Li, X., Yang, H., Jin, Z., Tong, L., Xiao, F., 2017. Selenium Leaching from Copper Anode Slimes Using a Nitric Acid–Sulfuric Acid Mixture. Metallurgist 61, 348–356. https://doi.org/10.1007/s11015-017-0500-2.
  • 9. Xiao, L., Wang, Y., Yu, Yang., Fu, G., Liu, Y., Sun, Z., Ye, S., 2019. Enhanced Selective Recovery of Selenium from Anode Slime Using MnO2 in Dilute H2SO4 Solution as Oxidant. J Clean Prod, 209, 494–504. https://doi.org/ 10.1016/j.jclepro.2018.10.144.
  • 10. Tokkan, D., Kuşlu, S., Çalban, T., Çolak, S., 2013. Optimization of Silver Removal from Anode Slime by Microwave Irradiation in Ammonium Thiosulfate Solutions. Ind Eng Chem Res, 52, 9719–9725. https://doi.org/10.1021/ie400345g.
  • 11. Wang, S., Cui, W., Zhang, G., Zhang, L., Peng, J., 2017. Ultrafast Ultrasound-Assisted Decopperization from Copper Anode Slime. Ultrason Sonochem, 36, 20–26. https://doi.org/10.1016/j.ultsonch.2016.11.013.
  • 12. Li, D., Guo, X., Xu, Z., Xu, R., Feng, Q., 2016. Metal Values Separation from Residue Generated in Alkali Fusion-Leaching of Copper Anode Slime. Hydrometallurgy, 165, 290–294. https://doi.org/10.1016/j.hydromet. 2016.01.021
  • 13. Guo, X., Xu, Z., Tian, Q., Li, D., 2017. Optimization on Selenium and Arsenic Conversion from Copper Anode Slime by Low-Temperature Alkali Fusion Process. J Cent South Univ, 24, 1537–1543. https://doi.org/10.1007/s11771-017-3558-x
  • 14. Rüşen, A., Topcu, M.A., 2017. Optimization of Gold Recovery from Copper Anode Slime by Acidic Ionic Liquid. Korean J Chem. Eng. 34, 2958–2965. https://doi.org/10.1007/s11814-017-0200-4.
  • 15. Rüşen, A., Topçu, M.A., 2018 Investigation of an Alternative Chemical Agent to Recover Valuable Metals from Anode Slime. Chem Pap 72, 2879–2891. https://doi.org/10.1007/s11696-018-0511-x.
  • 16. Binnemans, K., Jones, P.T., 2017. Solvometallurgy: An Emerging Branch of Extractive Metallurgy. J Sustain Metall. 3, 570–600. https://doi.org/10.1007/s40831-017- 0128-2. Bakır Anot Çamurundan Bakırın Liçinde Düşük Ötektik Noktalı Çözücü Kullanımının Araştırılması 118 Ç.Ü. Müh. Fak. Dergisi, 36(1), Mart 2021
  • 17. Palden, T., Regadío, M., Onghena, B.Binnemans, K., 2019. Selective Metal Recovery from Jarosite Residue by Leaching with Acid-Equilibrated Ionic Liquids and Precipitation-Stripping. ACS Sustain Chem Eng. 7, 4239–4246. https://doi.org/10.1021/ acssuschemeng.8b05938.
  • 18. Zhang, Q., Vigier, K.D.O., Royer, S., Jerome, F., 2012. Deep Eutectic Solvents: Syntheses, Properties and Applications. Chemical Society Reviews, 41(21), 7108-7146. https://doi.org/10.1039/C2CS35178A.
  • 19. Abbott, A.P., Capper, G., Davies, D.L., McKenzie, K J., Obi, S.U., 2006. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. Journal of Chemical & Engineering Data, 51(4), 1280-1282.
  • 20. Abbott, A.P., Capper, G., Davies, D.L.,mShikotra, P., 2006. Processing Metal OxidesmUsing Ionic Liquids. Mineral Processing and Extractive Metallurgy, 115(1), 15-18.
  • 21. Abbott, A.P., Collins, J., Dalrymple, I., Harris, C.P., Mistry, R., Qiu, F., Scheirer, J., Wise, W.,m2009. Processing of Electric Arc Furnace Dust Using Deep Eutectic Solvents. Aust J Chem. 62, 341–347. https://doi.org/10.1071/CH08476.
  • 22. Bakkar, A., Neubert, V., 2019. Recycling of Cupola Furnace Dust: Extraction and Electrodeposition of Zinc in Deep Eutectic Solvents. J Alloys Compd. 771, 424–432. https://doi.org/10.1016/j.jallcom.2018.08.246.
  • 23. Rüşen, A., Topçu, M., 2017. Investigation of Various Metal Recoveries from Zinc Plant Leach Residue by Choline-Chloride Agent. Curr Phys Chem. 7, 273–280. https://doi.org/10.2174/1877946807666170808120341.
  • 24. Rodriguez, N. R., Machiels, L., Onghena, B., Spooren, J., Binnemans, K., 2020. Selective Recovery of Zinc from Goethite Residue in the Zinc Industry Using Deep-Eutectic Solvents. Rsc Adv. 10, 7328–7335. https://doi.org/ 10.1039/D0RA00277A.
  • 25. Peeters, N., Binnemans, K., Riaño, S., 2020. Solvometallurgical Recovery of Cobalt from Lithium-Ion Battery Cathode Materials Using Deep-eutectic Solvents. Green Chem. 22, 4210-4221. https://doi.org/10.1039/D0GC00940G.
  • 26. Wang, S., Zhang, Z., Lu, Z.G., Xu, Z.A., 2020. Novel Method for Screening Deep Eutectic Solvent to Recycle Cathode of Li-Ion Batteries. Green Chem. 22, 4473-4482. https://doi.org/10.1039/D0GC00701C.
  • 27. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Shikotra, P., 2005. Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids. Inorg Chem. 44, 6497–6499. https://doi.org/10.1021/ic0505450.
  • 28. Khoei, A.R., Masters, I., Gethin, D.T., 2002. Design Optimisation of Aluminium Recycling Processes Using Taguchi Technique. J Mater Process Technol. 127, 96–106. https://doi.org/10.1016/S0924-0136(02)00273-X.
  • 29. Taguchi, G., 2005. Chowdhury, S., Wu, Y. Taguchi’s Quality Engineering Handbook. Wiley, 1696.
  • 30. Guo, Z.H., Pan, F.K., Xiao, X.Y., Zhang, L.,Jiang, K.Q., 2010. Optimization of Brine Leaching of Metals from Hydrometallurgical Residue. Trans Nonferrous Met Soc China, 20, 2000–2005. https://doi.org/10.1016/S1003- 6326(09)60408-8.
  • 31. Dhawan, N., Safarzadeh, M.S., Birinci, M., 2011. Kinetics of Hydrochloric Acid Leaching of Smithsonite. Russ J Non-Ferrous Met. 52, 209–216. https://doi.org/10.3103/S1067821211030059.
  • 32. Farahmand, F., Moradkhani, D., Safarzadeh, M. S., Rashchi, F., 2009. Brine Leaching of Lead-Bearing Zinc Plant Residues: Process Optimization Using Orthogonal Array Design Methodology. Hydrometallurgy, 95, 316–324. https://doi.org/10.1016/j.hydromet.2008.07.012.
  • 33. Kim, S.M., Park, K.S., Do Kim, K., Park, S. D., Kim, H.T., 2009. Optimization of Parameters for the Synthesis of Bimodal Ag Nanoparticles by Taguchi Method. J Ind Eng Chem. 15, 894–897. https://doi.org/10.1016/j.jiec.2009.09.019.
  • 34. Liu, G., Wu, Y., Tang, A., Li, B., 2020. Recovery of Scattered and Precious Metals from Copper Anode Slime by Hydrometallurgy: A Review. Hydrometallurgy, 197, 105460-105476. https://doi.org/10.1016/j.hydromet.2020.105460.
  • 35. Pérez, K., Toro, M., Saldaña, M., Rodriguez, E.S., Robles, P., Torres, D., Ricardo, I.J., 2020. Statistical Study for Leaching of Covellite in a Chloride Media. Metals. 10, 477. https://doi.org/10.3390/met10040477.
  • 36. Abbott, A.P., Capper, G., Davies, D.L., Shikotra, P., 2006. Processing Metal Oxides Using Ionic Liquids. Miner Process Extr Metall, 115, 15–18. https://doi.org/10.1179/ 174328506 X91293.
  • 37. Bakkar, A., 2014. Recycling of Electric Arc Furnace Dust Through Dissolution in Deep Eutectic Ionic Liquids and Electrowinning. J Hazard Mater, 280, 191–199. https://doi.org/10.1016/j.jhazmat.2014.07.066.
  • 38. Xie, X., Zou, X., Lu, X., Zheng, K., Cheng, H., Xu, Q., Zhou, Z., 2016. Voltammetric Study and Eectrodeposition of Cu from CuO in Deep Eutectic Solvents. J Electrochem Soc. 163, 537-543. https://doi.org/10.1149/2.1241609jes.
  • 39. Rao, S., Zou, X., Wang, S. Lu, Y., Shi, T., Hsu, H., Xu, Q., Lu, X., 2019. Electrodeposition of Ni-Cu Alloy Films from Nickel Matte in Deep Eutectic Solvent. Mater Chem Phys, 232, 6–15. https://doi.org/10.1016/j.matchemphys.2019.04.052.
  • 40. Yang, H., Reddy, R.G., 2014. Fundamental Studies on Electrochemical Deposition of Lead from Lead Oxide in 2: 1 Urea/Choline Chloride Ionic Liquids. J Electrochem Soc, 161, 586. https://doi.org/10.1149/2.1161410jes.
  • 41. Dönmez, B., Çelik, C., Çolak, S., Yartaşı, A., 1998. Dissolution Optimization of Copper from Anode Slime in H2SO4 Solutions. Ind Eng Chem Res, 37, 3382–3387. https://doi.org/10.1021/ie9800290.
  • 42. Liu, W., Yang, T., Zhang, D., Chen, L., Liu, Y. 2014. Pretreatment of Copper Anode Slime with Alkaline Pressure Oxidative Leaching. Int J Miner Process, 128, 48–54. https://doi.org/10.1016/j.minpro.2014.03.002.
  • 43. Xing, W.D., Lee, M.S., 2017. Leaching of Gold and Silver from Anode Slime with a Mixture of Hydrochloric Acid and Oxidizing Agents. Geosystem Eng, 20, 216–223. https://doi.org/10.1080/12269328.2017.1278728.
  • 44. Rüşen, A., Topçu, M.A., 2017. The Effect of EmimHSO4 (1-Ethyl-3-Methyl-imidazolium Hydrogen Sulfate) on Copper Recovery from Anode Slime. AKU J Sci Eng, 17, 696–703. https://doi: 10.5578/fmbd.58610.
  • 45. Ma, Z., Yang, H., Huang, S., Lu, Y., Xiong, L., 2015. Ultra-fast Microwave-assisted Leaching for the Recovery of Copper and Tellurium from Copper Anode Slime. Int J Miner Metall Mater, 22, 582–588. https://doi.org/10.1007/s12613-015-1110-2.
  • 46. Satlewal, A., Agrawal, R., Bhagia, S., Sangoro, J., Ragauskas, A.J., 2018. Natural Deep Eutectic Solvents for Lignocellulosic Biomass Pretreatment: Recent Developments, Challenges and Novel Opportunities. Biotechnol Adv, 36, 2030-2050. https://doi.org/10.1016/j.biotechadv.2018.08.009.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Aydın Rüşen This is me 0000-0001-5592-1411

Mehmet Ali Topçu This is me 0000-0002-0007-5665

Volkan Kalem This is me 0000-0001-9128-5686

Publication Date May 10, 2021
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Rüşen, A., Topçu, M. A., & Kalem, V. (2021). Bakır Anot Çamurundan Bakırın Liçinde Düşük Ötektik Noktalı Çözücü Kullanımının Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(1), 105-120. https://doi.org/10.21605/cukurovaumfd.933848